Mechanisms of Disease 2 - B2 - Geneeskunde - UL - Bundel

  Bundel

Sluit je aan bij JoHo om te kunnen inloggen en gebruik te maken van de tools en teksten
 

Aansluiten bij JoHo als abonnee of donateur

The world of JoHo footer met landenkaart

    Aansluiten bij JoHo met een JoHo abonnement

    JoHo abonnement (€20,- p/j)

    • Voor wie online volledig gebruik wil maken van alle JoHo's en boeksamenvattingen voor alle fases van een studie, met toegang tot alle online HBO & WO boeksamenvattingen en andere studiehulp
    • Voor wie gebruik wil maken van de gesponsorde boeksamenvattingen (en er met zijn pinpoints 10 gratis kan afhalen in een JoHo support center of bij een JoHo partner)
    • Voor wie gebruik wil maken van de vacatureservice en bijbehorende keuzehulp & advieswijzers
    • Voor wie gebruik wil maken van keuzehulp en advies bij werk in het buitenland, lange reizen, vrijwilligerswerk, stages en studie in het buitenland
    • Voor wie extra kortingen wil op (reis)artikelen en services (online + in de JoHo support centers)
    • Voor wie extra kortingen wil op de geprinte studiehulp (zoals tentamen tests en study notes) in de JoHo support centers

     of met een JoHo donateurschap

    JoHo donateurschap (€5,- per jaar)

    • Voor wie €10,- korting wil op zijn JoHo abonnement
    • Voor wie JoHo WorldSupporter en Smokey projecten wil steunen
    • Voor wie gebruik wil maken van alle gedeelde materialen op WorldSupporter
    • Voor wie op zoek is naar de organisatie bij een vacature

     

    Aanmelden & Aansluiten bij JoHo 

    De items van deze bundel
    Wat zijn de genetische aspecten van kanker? - Chapter 14

    Wat zijn de genetische aspecten van kanker? - Chapter 14

    Inleiding

    Alle kankers zijn aandoeningen van somatische cellen, maar sommige worden veroorzaakt door overgeërfde germline mutaties. De risico op kanker wordt bepaald door een combinatie van genetische en omgevingsfactoren. Zo bestaan industriële kankervormen door chemicaliën en kiezen mensen voor een ongezonde levensstijl met roken en alcohol. Mensen met genetisch kortere telomeren hebben meer risico op kanker. De belangrijkste mutaties die kanker veroorzaken zijn die in tumor suppressor genen (TSG), oncogenen en DNA mismatch repair genen. Ook spelen epigenitica een rol. Dit zijn erfelijke factoren die niets met de DNA sequentie te maken hebben.

    Verschillende soorten onderzoek dragen bij aan kennis over kankers: epidemiologische, familiaire, tweeling, associatie, biochemische, dierlijke en virale factoren worden onderzocht. Borstkanker is de meest voorkomende kanker bij vrouwen. De incidentie van kanker blijkt te variëren in verschillende populaties blijkt uit epidemiologische studies. Door naar het voorkomen van een kanker in de familie te kijken, kan de erfelijke factor onderzocht worden. Tweelingstudies en muizenstudies bewijzen dat omgevingsfactoren nog meer bepalend zijn dan erfelijke belasting. Uit associatiestudies blijkt dat bloedgroep A extra risico geeft op maagkanker. Sommige biochemische factoren geven een predispositie voor kanker. Uit muizenstudies blijkt dat bepaalde virussen de kans op kanker verhogen, deze bouwen een oncogen in het DNA in of hebben RNA dat de celdeling bevorderd. Retrovirussen hebben maar drie genen nodig (gag: voor antigenen, pol: voor reverse transcriptase en env: voor de envelop eiwitten) maar kunnen ook een vierde, oncogen, hebben voor transformatie.

    Oncogenen

    Cellulaire oncogenen (ook wel c-onc genoemd) zijn gemuteerde varianten van normale genen, proto-oncogenen genoemd, die een grote rol spelen bij differentiatie en celgroei. Virale oncogenen (v-onc) worden door virussen in de cel gebracht. Waarschijnlijk ontstaan ze door mutaties bij replicatie van virussen. Bij kanker zijn vaak (meerdere) chromosomen aangedaan door translocatie, herrangschikking of inserties en deleties. Hierdoor kan de activiteit of functie van een proto-oncogen worden veranderd. Bij chronische myeloïde leukemie wisselen chromosoom 9 en 22 bijvoorbeeld een deel uit door reciproke translocatie, wat leidt tot een Philadelphia Ph1 chromosoom waarbij een gefuseerd eiwit (ABL-BCR) ontstaat. Bij Burkitt Lymphoma wisselen 8 en 14 een deel, waardoor de expressie van het MYC-oncogen meer dan vertienvoudigd wordt door de regulatiefactoren van een immuunglobuline.

    Proto-oncogenen kunnen ook geactiveerd worden door gen amplificatie, een overlevingsmechanisme waarbij er meerdere kopieën van een gen worden aangemaakt. In 10% van de tumoren zien we deze ‘extra (stukjes) chromosoom’, genaamd double minute chromosomes of homogeneously staining regions. Dit treedt vaak op bij de MYC-familie van genen. Het veranderen van een cel door het toevoegen van nieuw DNA heet transfectie. De oncogeniteit van Ras en KIT wordt geactiveerd door een puntmutatie.

    Naast het verlies van de functie van de proto-oncogenen hebben kankercellen vaak ook problemen met de signaal transductie, een pathway wat zorgt dat proliferatie en differentiatie goed verloopt. Proto-oncogenen zijn door de evolutie heen goed in stand gebleven en hebben een functie gekregen. Ze zorgen voor signaal transductie door:

    • Fosforylering van serine, threonine en tyrosine, waardoor bijvoorbeeld de kinase activiteit verandert. Dit resulteert in signaaltransductie.

    • GTPase waardoor de GDP-GTP cyclus en de Ras eiwitten aangezet worden.

    • Eiwitten in de nucleus die de celcyclus, DNA replicatie en gen-expressie regelen.

    Typen oncogenen

    • Groeifactoren: stoffen die de cel van G0 naar de start van de celcyclus brengen, wat leidt tot de groei van de cel. Een voorbeeld hiervan is v-SIS.

    • Groeifactorreceptoren: deze receptoren kunnen op de celmembraan of in het cytoplasma liggen en wanneer ze continue op ‘aan’ staan, wordt er aan de controle voorbijgegaan. Een voorbeeld van een gemuteerde tyrosine kinase is ERB-B. Dit komt meestal niet door translocatie maar door een punt-mutatie.

    • Intracellulaire signaaltransductie factoren: continue geactiveerde eiwitten met GTPase activiteit (GTP  GDP) of cytoplasmische serine threonine kinases.

    • DNA-bindende kerneiwitten: deze beïnvloeden de genexpressie. Voorbeelden zijn FOS, JUN en ERB-A. MYC en MYB vallen hier ook onder, zij brengen de cel van de G1 naar de S fase, waardoor de cel niet in de rustfase komt.

    • Celcyclusfactoren: door de remming op de celcyclus weg te nemen, komt de cel in constante proliferatie. Bcl-2 remt apoptose, wat zorgt voor accumulatie van cellen.

    Tumor suppressor genen

    De functie van TSG is het remmen van ongewenste celproliferatie. Een mutatie bij de TSG zijn de grootste erfelijke veroorzaker van kanker. Als een van de genen nog goed is en tumorvorming nog remt, is deze aandoening recessief. Net als bij de oncogenen is een erfelijke variant niet genoeg om kanker te veroorzaken, er moeten nog omgevingsfactoren bij.

    Retinoblastoma is een kinderkanker die door een gemuteerd TSG komt. Bij erfelijke vorm is het vaak bilateraal en niet-erfelijke vorm unilateraal. De two-hit hypothese stelt dat een recessieve kanker het vaakst voorkomt als een allel door een germline mutatie defect is en de ander door een somatische mutatie ook kapot gaat. Bij retinoblastoma gaat het om een deletie in 13q14. Het RB1 gen codeert voor het p110rb eiwit dat de regulatie van de celcylcus remt. Als dit eiwit gedeactiveerd wordt, kan de cel naar de S fase. Dit gebeurt continu bij retinoblastoma, waardoor de cel blijft delen. Bij loss of heterozygosity (LOH) is er maar één (soort) allel. Dit kan op verschillende manieren gebeuren, o.a. door mitotische misjunctie of deleties.

    Gemuteerd p53 is een oncogen dat met RAS samenwerkt. Gezond p53 wordt ook wel de ‘guardian’ van het genoom genoemd, als er teveel mutaties zijn na duplicatie wordt herstel of apoptose ingezet. Dit doet het tussen de G1 en S fase. Gemuteerde p53 is meer stabiel en kan reageren met normaal p53, waardoor het de normale kan inactiveren: het is dus dominant. Het Li-Fraumeni syndroom komt door een erfelijke aandoening van p53. Het veroorzaakt veel verschillende vormen van kanker al op jonge leeftijd. Wanneer een lichaamseigen p53 eiwit is gebonden aan een T antigeen, is het een TP53 tumor suppressor gen. Dit is het gen dat het vaakst gemuteerd is bij kanker, zoals blaaskanker, colonkanker en longkanker.

    Epigenetica van kanker

    Zowel hypo- als hypermethylatie is een epigenetische factor die kanker kan veroorzaken. Hypomethylatie kan leiden tot loss of imprinting (LOI), waardoor delen van het chromosoom geactiveerd worden die inactief hadden moeten zijn. Hierdoor wordt de expressie van sommige eiwitten hoger dan normaal. Ook wordt het chromosoom instabiel, wat een risicofactor voor kanker is. Als laatste kan LOI ook leiden tot het activeren van een oncogen. De meest voorkomende LOI is die van IGF2, waardoor er teveel insuline-like growth factor wordt geproduceerd. Hypermethylatie geeft risico’s als inactivatie van TSG’s. Hypermethylatie komt het vaakst voor als een C en een G naast elkaar liggen, dit heet een CpG nucleotide eiland. Dit veroorzaakt vaak colonkanker.

    Telomeren

    Telomeren zijn de uiteindes van chromosomen. De sequentie is telkens hetzelfde en wordt herhaald: TTAGGG (bij mensen). Hier wordt telomerase mee gecodeerd, wat de telomeren verlengd. Bij elke celdeling worden de telomeren korter. Als de telomeren te kort zijn, is het chromosoom niet beschermd bij deling. Veel kankers en verouderingsziekten worden geassocieerd met korte telomeren. Kankers hebben vaak wel veel telomerase, waardoor cellen veel langer door kunnen blijven delen. Hierdoor worden korte telomeren in stand gehouden en blijft deling mogelijk.

    Genetica

    Één op de veertig van de mensen in de ontwikkelde landen krijgt colon- of darmkanker. De meeste colorectale carcinomen ontwikkelen uit goedaardige adenomen. Kleine poliepen kunnen in 5 tot 10 jaar tot kanker ontwikkelen. Hoe kleiner de poliep, hoe kleiner de kans dat kanker ontwikkelt. Vooral verlies van allelen op chromosoom 5 leidt tot colonkanker. LOH op 5 en 18 samen met RAS en P53 mutaties zorgen dat een benigne adenoma tot carcinoma ontwikkelt. 1% van de mensen met colonkanker heeft de autosomale dominante ziekte Familiale Adenomateuze Polypose (FAP). Hierdoor krijg je grote poliepen op de darm met 90% kans op darmkanker. Een deletie van 5q21 zorgt voor een verband tussen FAP en DNA markers. Meestal komt dit door LOH.

    Bij veel colorectale carcinomen is een deel van chromosoom 18 verloren gegaan. Dit gen, DCC (Deleted in colorectal cancer), zorgt voor cel-cel en cel-basaal membraan verbindingen. Bij familiaire colorectale kanker zijn er vaak een paar kleine poliepen en zit de kanker vaak rechts. We noemen dit Lynch syndroom of HNPCC (hereditary, non-polyposis colorectal cancer). Bij dit syndroom zijn meer allelen aanwezig dan bij FAP. Dit komt doordat de DNA mismatch genen aangetast zijn en microsatelliet instabiliteit ontstaat. Dit begint als een LOH waarna na een tijdje het tweede allel aangetast wordt. Analyse van tumor DNA of immunohistochemie (IHC) toont of HNPCC-gerelateerde mutaties aanwezig zijn.

    Er zijn een aantal polypose syndromen, deze komen niet vaak voor. Hieronder vallen:

    • MYH polyposis, gedraagt zich autosomaal negatief, wordt veroorzaakt door mutatie op 1p33, waardoor mismatch repair minder goed werkt.

    • Bij Juvenile Polyposis Syndrome, een autosomaal dominante aandoening, is het risico op kanker 13 keer verhoogd. Kanker diagnose gemiddeld na 30 jaar. SMAD4 18q en BMPRIA 10q22 zijn hierbij betrokken.

    • Bij Cowden ziekte, of multipele hamartoma syndroom, autosomaal dominant, komt macrocefalie voor. Het verhoogt de kans op borst en thyroïd kanker. Dit komt door mutaties van het PTEN gen op 10q23.

    • Bij het Peutz-Jegher Syndroom, autosomaal dominant, geeft donkere melanine vlekjes op de lippen die bij volwassenheid kunnen verdwijnen. Vaak hebben patiënten veel koliekpijnen en verhoogde kans op het jong krijgen van kanker op verschillende plekken. Het komt door een mutatie STK11 op 19p.

    Borstkanker

    Één op de twaalf vrouwen in het westen krijgt borstkanker, meestal tussen de 40 en 55 jaar oud. 1/3 van de zieke vrouwen krijgt ook metastasen. 1/5 heeft het in de familie zitten. Dan komt het vaak vroeg, bilateraal en in combinatie met ovariumkanker tot uiting. Ook het voorkomen bij nauw verwante familie is hiervoor een aanwijzing.

    Er zijn heel veel oncogenen betrokken en LOH. De genen BRCA1 op chromosoom 17 en BRCA2 op 13 zijn oncogenen die dominant zijn voor borstkanker. Bij het BRCA1 gen is er 60-85% kans om borstkanker te ontwikkelen. Ook kan het zorgen voor het ontwikkelen van ovarium- en prostaatkanker. Bij BRCA2 is dit verband minder duidelijk maar wel aanwezig. Bij mannen met BRCA2 is de kans op borstkanker 6%.

    Ovariumcarcinoom

    Één op de zeventig vrouwen ontwikkelt ovariumcarcinoom, de kans neemt met de leeftijd toe. Meestal ontstaat de kanker in het epitheel. Vaak is het een LOH op 11q25. 5% van de vrouwen met ovariumcarcinoom heeft het in de familie en bij slechts 1% is door een dominante aandoening, meestal komt het door één gen mutatie. Vaak zijn BRCA1 en BRCA2 aangedaan, maar soms ook de genen betrokken bij het HPNCC/Lynch Syndroom.

    Prostaatkanker

    Na borstkanker is prostaatkanker de meest voorkomende vorm van kanker. Mannen hebben een kans van 10% om het te krijgen en 3% om eraan te sterven. LOH’s van genen op verschillende chromosomen kunnen het veroorzaken, één enkele dominante locus kan al genoeg zijn om prostaatkanker te doen ontstaan. HPC1 en HPC2 zijn de genen voor erfelijke prostaatkanker, maar er zijn veel meer genen die aangedaan kunnen zijn. Ook BRCA1 en BRCA2 kunnen prostaatkanker veroorzaken. De meeste niet-familiaire prostaatkankers ontstaan na het 65ste levensjaar.

    Genetic counseling

    Vaak is de familiegeschiedenis erg belangrijk bij kanker. Sommige families hebben een ‘familiair cancer-disproposing’ syndroom, bijvoorbeeld het Li-Fraumeni syndroom. Daaraan moet worden gedacht bij het op jonge leeftijd optreden van kanker of wanneer kanker in meerdere organen ontstaat. Bij 50% van de zeldzame kankers is er een gemuteerd gen overgeërfd. Een aantal recessieve ziektes verhoogt ook de kans op kanker omdat ze zorgen voor chromosoom instabiliteit en zelfs chromosoom breking.

    Niet alleen de cancer-predisposing syndromen geven aan dat een individu risico loopt door zijn familie, er zijn veel factoren die meespelen. Hieronder valt het aantal mensen met kanker in de familie, hoe dicht deze bij het individu staan en hoe oud ze waren toen de kanker ontstond. Vaak zijn er niet veel mensen met (dezelfde) kanker in de familie en is het maar de vraag of het in dit geval door erfelijke factoren is ontstaan. In zo’n geval kan men zich beroepen op epidemiologische tabellen, waar de waarschijnlijkheid van de erfelijkheid van kankers staat beschreven. Een voorbeeld hiervan is het Manchester Scoring System voor BRCA1 en BRCA2.

    Het grootste doel bij familiaire kanker is de kanker vroeg te ontdekken of zelfs te voorkomen. Dit kan betekenen dat een individu een levenslang dieet, medicijnkuur of screening krijgt. Screening wordt vooral gedaan bij mensen met een familiair risico en bestaat uit allerlei diagnostische testen. Deze testen zijn specifiek voor het soort kanker waarvoor het risico vergroot is: zo wordt bij verdenking van FAP gelet op CHRPE’s (Congenital Hypertrophy of the Retinal Pigment Epithelium).

    Door de ontwikkelingen op het gebied van genen en het onderzoeken van het genotype van patiënten, kan er bij bepaalde bijbehorende fenotypes ook al een sterke verdenking op kanker ontstaan. Hoe meer bekend wordt over genen, hoe meer DNA-testen er gedaan zullen worden. Omdat maar een klein deel van de kankers via Mendeliaanse overerving werkt, werkt genetische screening maar bij een klein deel van alle kankers. Toch is screening vaak kosten effectief, waardoor vrouwen in veel landen op BRCA1, BRCA2 en P53 worden getest en families met colorectale kanker ook regelmatig gescreend worden. Bij cancer-predisposing syndromes is de aandoening vaak dominant, waardoor heterozygoten bijna 100% zekerheid hebben dat ze de aandoening ontwikkelen. Daarom worden deze individuen heel vaak gescreend.

    Voor- en nadelen van screenen

    Ondanks dat veel mensen erg enthousiast zijn over screenen moet er goed gekeken worden naar wat het kost en wat het oplevert. Zo kost screenen van de meest voorkomende kankers veel energie van zowel patiënt als arts. Wie moet er eigenlijk gescreend worden? Bij zeldzame familiaire ziektes is dat makkelijk te bepalen, maar bij complexere varianten van kanker, zoals retinoblastoma, niet.

    De leeftijd waarop gescreend moet worden verschilt per kankervorm. Vaak begint de screening 5 jaar voor de leeftijd waarop het jongste familielid kanker kreeg. Bij kankervormen die al in de kindertijd voorkomen, zoals retinoblastoma, begint de screening postnataal. Bij risico op colonkanker is de screening eens in de 5 jaar, de frequentie neemt toe als er een poliep wordt gevonden. Vanaf een leeftijd van 35 krijgen vrouwen jaarlijks mammografie. Vaak is het moeilijk om te bepalen wat precies bekeken moet worden, omdat niet alle kankervormen makkelijk te screenen zijn.

    Screenen op veelvoorkomende kankers

    Colorectale kanker is het best te screenen. Hiervoor wordt colonoscopie aangeraden, maar hiervoor is een getrainde arts nodig en is er kans op morbiditeit. Om deze reden zijn er drie criteria, de Amsterdam criteria, bedacht: ten minste 3 familieleden met de aandoening, in minstens 2 opvolgende generaties, bij tenminste één iemand voor de leeftijd van 50.

    Bij vrouwen is er vaak kans dat de borstkanker tussen de screeningprocedures in ontwikkeld, dit kan liggen aan het feit dat premenopausaal weefsel minder goed gescreend kan worden dan postmenopausaal weefsel. Ook is het mogelijk dat de radiatie van de screening tot kanker kan leiden, dit risico bestaat voornamelijk bij vrouwen die al op jonge leeftijd gescreend worden. Vaak neemt men dit risico voor lief. Voor de leeftijd van 35 wordt nauwelijks gescreend omdat de resultaten dan nog niet goed te interpreteren zijn.

    Ovariumcarcinomen beginnen vaak asymptomatisch. Vroege diagnose kan levens redden maar is moeilijk omdat de plaats van de ovaria moeilijk te screenen is. Ultrasonografie en Doppler kleuring werken het beste. Bij hoge verdenking kan ook laparoscopie worden toegepast. Ook kan gescreend worden op CA125, een glycoproteïne die vaak verhoogd is bij ovariumcarcinoom, maar ook bij andere ziekten. Vaak worden de ovaria profylactisch verwijderd als de vrouw geen kinderen meer wilt.

    De behandeling

    Er zijn meerdere manieren om kanker te voorkomen. Bij mensen met familiaire cancer-predisposing syndrome wordt vaak voor profylactisch opereren gekozen. Het verwijderen van de baarmoeder, mastectomie, geeft wel weer verhoogd risico op borstkanker. Bij risico op darmkanker wordt een levenslang dieet voorgeschreven. Bij overerfelijke varianten van kanker moet ook over de kinderwens van de patiënt worden nagedacht.

    Hoe werken DNA replicaties, reparaties en recombinaties? - Chapter 6

    Hoe werken DNA replicaties, reparaties en recombinaties? - Chapter 6

    De diversiteit aan levende organismen hangt af van de genetische veranderingen door miljoenen jaren heen. Om te overleven en reproduceren moeten individuen genetisch stabiel zijn. De meeste DNA schade is tijdelijk en wordt gecorrigeerd door een proces genoemd DNA herstel. Wanneer het herstel faalt, zal er een irreversibele mutatie ontstaan in het DNA, die kan leiden tot een verandering van het eiwit. Een mutatie in geslachtscellen zal worden doorgegeven aan elke cel van het multicellulaire organismen en aan de opvolgende generaties. De andere somatische cellen moeten worden beschermd tegen genetische verandering tijdens het leven van de individu.

    Wat zijn celgemeenschappen (weefsels, stamcellen, kanker)? - Chapter 20

    Wat zijn celgemeenschappen (weefsels, stamcellen, kanker)? - Chapter 20

    Kankercellen prolifereren, infiltreren en metastaseren. Kanker ontstaat wanneer de basale regels van celdeling worden geschonden. Om orde te handhaven binnen lichaamsweefsels moeten cellen zich aan bepaalde gedragsregels houden. Dat wil zeggen dat ze moeten delen wanneer nieuwe cellen van dat betreffende type nodig zijn, en afzien van delen wanneer geen nieuwe cellen nodig zijn; ze moeten lang genoeg leven om hun taken binnen het weefsel te vervullen, en ze moeten sterven wanneer dat nodig is; ze moeten hun gespecialiseerde karakter behouden, en op de juiste plek hun taken uitvoeren; ze moeten niet afdwalen naar andere weefsels en daar gaan delen.

    Pathologie: Wat houden hemostase, hemorragische aandoeningen en trombose in? - Chapter 4

    Pathologie: Wat houden hemostase, hemorragische aandoeningen en trombose in? - Chapter 4

    Hemostase

    Hemostase is het proces waarbij bloedstolling wordt gevormd op de plaats van vasculaire schade. Er zijn twee groepen aandoeningen. Bij hemorragische aandoeningen zijn de hemostatische mechanismen insufficiënt en daarbij treden excessieve bloedingen op. Bij tromboseaandoeningen worden ongewenste bloedproppen gevormd in de bloedvaten.

    Bloedplaatjes hebben een cruciale rol in de hemostase door de primaire plug te vormen, die vasculaire defecten heelt en een oppervlakte presenteert voor geactiveerde coagulatie-factoren. Bloedplaatjes zijn afkomstig van megakaryoten uit het beenmerg. Ze bevatten twee typen granulen: α-granulen bevatten fibrinogeen, coagulatiefactor V en vWF en δ-granulen bevatten adenosine difosfaat (ADP), calcium, stikstofoxide (NO), serotonine en epinefrine.

    Hemostase is een proces waarin bloedplaatjes, stollingsfactoren en het endotheel bij het gebied van de vasculaire schade samen een bloedstolsel kunnen vormen, om verdere bloedingen te voorkomen. Onmiddellijk na het oplopen van schade zal er arteriële vasoconstrictie optreden, waardoor de bloedstroom wordt gereduceerd.

    Vervolgens wordt dit overgenomen door de bloedplaatjes en coagulatiefactoren, die samen een bloedplaatjes plug vormen. Dit proces wordt de primaire hemostase genoemd. Door de beschadiging in het endotheel komen de subendotheliale von Willebrand factor (vWF) en collageen bloot te liggen, waardoor de bloedplaatjes geactiveerd worden, gevolgd door een proces van adhesie en aggregatie. Tijdens de adhesie vormt vWF als het ware een brug tussen de bloedplaatje oppervlakte glycogeen receptor Ib (GpIb) en het collageen. Na adhesie veranderen de bloedplaatjes van vorm, zodat het glycoproteïne IIb/IIIa een verhoogde affiniteit krijgt voor fibrinogeen. Vervolgens laten de granulen hun inhoud vrij. Calcium bindt aan de fosfolipidelaag, wat de assemblatie van coagulatiefactoren mogelijk maakt. ADP, NO en trombine activeren de bloedplaatjes, die weer prostaglandine produceren. Dit activeert de bloedplaatjes aggregatie.

    De bloedplaatjes plug is niet sterk genoeg en daarom wordt er nog een afzetlaag van fibrine gevormd, de secundaire hemostase. Bij beschadiging komt weefselfactor (TF) vrij, die vervolgens coagulatiefactor VII kan activeren, die een cascade van reacties op gang zet, leidend tot de aanmaak van trombine. Elke stap heeft een enzym (geactiveerd coagulatie-factor), een substraat (inactief coagulatiefactor) en een cofactor (katalysator) nodig. De assemblatie van reactiecomplexen zijn afhankelijk van de negatief geladen fosfolipide oppervlakte, calcium en vitamine K. In de laatste stap kan trombine oplosbaar fibrinogeen omzetten tot onoplosbaar fibrine. Vervolgens wordt tijdens de aggregatie een heel netwerk van fibrinevezels gemaakt, die zelf ook weer bloedplaatjes activeert.

    Er zijn ook contraregulerende mechanismen die de stolling stabiliseren, limiteren tot de plaats van beschadiging en mogelijk het stolsel afbreken en het weefsel herstellen. Een harde bloedstroom kan coagulatiefactoren wegspoelen, die vervolgens door de lever worden opgeruimd. Ook zullen negatief geladen fosfolipiden helpen bij de opruiming. Enzymatische activiteit van plasmine reguleert de afbraak van fibrine tot fibrinogeen, ofwel de fibrinolyse. Na de fibrinolyse blijven er nog D-dimeren rond circuleren, wat vaak als marker wordt gebruikt. Plasminogeen wordt door weefsel plasminogeen activator (t-PA) uit het endotheel omgezet tot plasmine. Plasmine wordt weer gereguleerd door α2-plasmine remmer.

    Het endotheel bevat ook andere anticoagulante factoren. Trombomoduline en endotheliale eiwit C receptor binden trombine en eiwit C, wat leidt tot een eiwit C/ eiwit S complex op het endotheliale celoppervlak, waardoor trombine zijn coagulatiefunctie verliest en factor Va en VIIIa worden geremd. Heparine-achtige moleculen binden trombine, waaardoor de factoren IXa, Xa, XIa en XIIa worden geremd. Weefsel factor pathway remmer (TFPI), zoals eiwit C, bindt en remt weefsel factor VIIa complexen.

    Er zijn verschillende medicijnen die kunnen inwerken op het proces van de hemostase. Aspirine remt de aggregatie en veroorzaakt een mild bloedingsdefect door het remmen van cyclo-oxygenase, die helpt bij de aanmaak van tromboxaan A2 (TxA2). Tromboxaan is een prostaglandine die aggregatie juist bevordert.

    Gebaseerd op analyses in klinische laboratoria zijn de coagulatie cascaden verdeeld in extrinsieke en intrinsieke routes. In een protrombine tijd (PT) analyse worden TF, fosfolipiden en calcium aan plasma toegevoegd, waarbij de tijd tot aan fibrinestolling wordt gemeten. Deze PT analyse stelde de functie van de eiwitten van de extrinsieke route vast, waaronder coagulatiefactor VII, X, C, II en fibrinogeen. Bij een partiële tromboplastine tijd (PTT) analyse worden ook nog negatieve deeltjes aan het plasma toegevoegd. Hieruit werd de functie van intrinsieke route eiwitten bekend, waaronder factor XII, XI, IX, VIII, X, V, II en fibrinogeen.

    Deficiënties met de factoren V, VII, VIII, IX en X leiden tot hemorragische aandoeningen. Protrombinedeficiëntie is niet levensvatbaar. Factor XII deficiëntie leidt niet tot bloedingen en de precieze oorzaak daarvan wordt nog onderzocht. Factor XI deficiëntie leidt tot milde bloedingen.

    Trombine is de belangrijkste coagulatiefactor, door de enzymatische activiteiten controleert het diverse aspecten van hemostase en koppelt het stolling aan inflammatie en herstel. Trombine’s meest belangrijke activiteit is de conversie van fibrinogeen tot fibrine. Trombine is ook een inductor voor bloedplaatjes activatie en aggregatie, doordat het ook protease-geactiveerde receptoren (PAR’s) kan activeren. Door de activatie van PAR’s worden proinflammatoire effecten opgewekt, leidend tot herstel en angiogenese. Trombine kan ook veranderen van een procoagulant naar een anticoagulant, om de stolling te reguleren en te limiteren tot de plaats van de vasculaire schade.

    Hemorragische aandoeningen

    Hemorragische aandoeningen gaan gepaard met abnormale bloedingen, veroorzaakt door primaire of secundaire hemostase defecten in de bloedvaten, bloedplaatjes of coagulatie-factoren. Defecten in de primaire hemostase (bloedplaatjes en von Willebrand defecten) presenteren zich meestal met kleine bloedingen in de huid of mucosale membranen in de vorm van petechiën (puntbloedinkjes) of grotere purpura. Mucosale bloedingen kunnen ook optreden in de vorm van neusbloedingen, gastro-intestinale bloedingen of een excessieve menstruatie. Trombocytopenie, een tekort aan bloedplaatjes, kan fataal zijn. Defecten in de secundaire hemostase (coagulatiefactor defecten) presenteren zich met bloedingen in een spier of gewricht (hemartrose). Hemartrose is karakteristiek voor hemofilie. Kleine bloedvat defecten presenteren zich vaak als purpura of ecchymose (oppervlakkige bloeding). Soms ontstaat er ook een voelbare massa bloed, een hematoom.

    De klinische significatie van bloeding hangt af van het bloedvolume, de locatie en snelheid van optreden. Chronisch of terugkerende externe bloedverlies kunnen leiden tot een ijzer deficiënte anemie.

    Trombose

    Trombose kan worden veroorzaakt door primaire afwijkingen, waaronder endothele schade, stase of turbulente bloedstroom en hypercoagulatie van het bloed. Endothele schade leidt tot activatie van bloedplaatjes door blootstelling van vWF en weefselfactor, wat de formatie van een trombus in het hart en de arteriële circulatie mogelijk maakt. Dit kan geïnduceerd worden door ontsteking, infectie, hypercholesterolemie, homocysteïnemie en toxinen van sigaretten. Deze factoren kunnen procoagulante veranderingen, bijvoorbeeld downregulatie van trombomoduline, en antifibrinolytische effecten, zoals activatie van plasminogeen activator remmers (PAI’s), tot stand brengen.

    Stase en turbulentie kunnen bijdragen aan de formatie van een trombus. Ze promoten endotheliale activatie, verbeteren procoagulante activiteit en leukocyt adhesie, onderbreken laminaire flow en voorkomen wegspoeling van coagulatiefactoren. Zwerende atherosclerotische plaques stellen vWF en weefselfactor bloot en veroorzaken turbulentie. Aorta en arteriële dilataties, ofwel aneurysma’s, en hyperviscositeit leiden tot locale stase. Sikkelcel anemie geeft ook een aanleg voor trombose ontwikkeling.

    Hypercoaguliteit, of wel trombofilie, is een predisponerende aandoening met veneuze trombose. Dit kan primair genetisch zijn, waarbij er meestal een mutatie in het factor V Leiden gen (eiwit C inactivatie) of protrombine gen (overproductie van protrombine) zit. Ook kan het homocysteïne gehalte verhoogd zijn of kunnen er deficiënties van anticoagulante factoren optreden. Erfelijke hypercoagulatie oorzaken moeten overwegen worden in trombose-patiënten jonger dan 50 jaar. De oorzaak kan ook secondair zijn, door verworven risicofactoren. Een hypo-oestrogene status door gebruik van orale anticonceptiva of zwangerschap verhoogd coagulatiefactor-synthese door de lever en vermindert anticoagulantia. Het mechanisme van roken en obesitas is nog onbekend.

    Heparine-geïnduceerde trombocytopenie (HIT) syndroom kan optreden na overbehandeling met heparine-achtige moleculen. Antifosfolipide antilichaam syndroom (lupus anticoagulante syndroom) kan zich uiten in trombose, miskramen, hartklepvegetaties, trombocytopenie, pulmonale embolie en hypertensie, beroertes, darminfarcten en renale microangiopathie. Het precieze mechanisme van deze ziekte is nog onbekend. Behandeling bestaat uit anticoagulatia en immunosuppressiva.

    Als patiënten een eerste trombose overleven, ondergaan de trombi in de daaropvolgende dagen tot weken een combinatie van de vier gebeurtenissen:

    • Propagatie: trombi verzamelen nog meer bloedplaatjes en fibrine

    • Embolisatie: trombi komen los en transporteren zich door de vaten

    • Dissolutie: door fibrinolyse kunnen jonge trombi oplossen

    • Organisatie en recalanisatie: oudere trombi worden georganiseerd door ingroei van endothele cellen, gladde spiercellen en fibroblasten. Een trombus wordt dan verkleind.

    Trombi worden van klinisch belang wanneer ze een obstructie veroorzaken in arteriën of venen of wanneer ze leiden tot een embolie. Veneuze trombose (phlebotrombose) presenteert zich vaak met een pijnlijke opstopping, zwelling en distale oedeem. Diepe veneuze trombose (DVT) treedt op in een vene in het been. Daarbij dient uitgekeken te worden voor een pulmonale embolie, waarbij de bloedprop in de pulmonale arterie komt. Arteriële en cardiale trombosen resulteren vaak in infarcten, bijvoorbeeld een myocardinfarct (MI). Diffuse intravasculaire coagulatie (DIC) is een complicatie waarbij trombine continue wordt geactiveerd, wat leidt tot trombosevorming in de microcirculatie.

    3. hemodynamische aandoeningen, trombose en shock

    De gezondheid van cellen en weefsels hangt af van de zuurstofsaturatie van het circulerende bloed en een normale volumehomeostase. Deze homeostase kan behaald worden wanneer er sprake is van ongeschonden vaatwanden, normale intravasculaire druk en osmolariteit en aanwezigheid van bloed bij schade.

    Oedeem

    Oedeem staat voor een verhoogd vloeistofniveau in de interstitiële ruimtes in weefsels. Anastacia is een ernstige vorm van oedeem waarbij er sprake is van een subcutane (onder de huid) weefselzwelling. Er zijn verschillende oorzaken voor het optreden van oedeem:

    Verhoogde hydrostatische druk

    Lokale verhogingen in de intravasculaire druk kunnen ontstaan door een verzwakte veneuze terugvloed. Verhogingen ontstaan in het algemeen door congestief hartfalen, waarbij de rechter ventrikel functie aangetast kan zijn. Congestief hartfalen is een cardiale aandoening waarbij het hart niet in staat is om genoeg bloed uit te pompen. Hierdoor wordt het volume in de disfunctionele kamer van het hart groter. Door de verhoogde druk kan bloed niet goed meer het hart in en zal er minder veneuze terugvloed naar het hart mogelijk zijn. Hierdoor kan ook een verlaagde cardiac output ontstaan. De verlaagde cardiac output kan weer zorgen voor een verlaagde nierperfusie. Om oedeem hierbij tegen te gaan, zal er een grotere cardiac output aanwezig moeten zijn of een verhoogde nierperfusie. Indien de nierperfusie erg verlaagd is, wordt het RAAS-systeem geactiveerd, zodat natrium en waterretentie plaats zal vinden. Dit zorgt echter voor een groter bloedvolume in het lichaam, terwijl het hart niet goed meer kan pompen. Als het hartfalen blijft bestaan en de cardiac output niet omhoog zal gaan, zal er oedeem ontstaan of zal het bestaande oedeem erger worden, doordat het overtollige water in de venen nergens anders naartoe kan gaan.

    Verlaagde osmotische druk in het plasma

    De osmotische druk in het intravasculaire colloïd wordt op een normaal niveau gehouden door albumine. Wanneer albumine niet goed wordt gesynthetiseerd of niet meer in de circulatie voorkomt, zal er een verlaagde osmotische druk zijn. Dit leidt ertoe dat vloeistof naar de interstitiële weefsels verplaatst. Albumineverlaging kan ontstaan door nefrotisch syndroom, waarbij de capillaire wanden van de glomeruli lekken bevatten. Dit kan ook voorkomen door ondervoeding (kwashiorkor) en leverfunctiestoornissen.

    Lymfatische obstructie

    Normaal gesproken wordt overtollig water via het lymfesysteem meegenomen naar andere delen van het lichaam, maar wanneer er sprake is van een obstructie of een ontsteking kan dit niet. Er zal dan oedeem ontstaan. Dit oedeem is non-pitting en vaak unilateraal.

    Natrium en water retentie

    Een verhoogd zoutgehalte kan zorgen voor een verhoogde hydrostatische druk door de expansie van het intravasculaire volume en een verlaagde vasculaire osmotische druk. Dit kan het geval zijn bij natriumretentie bij nierinsufficiëntie.

    Inflammatie/ontsteking

    Bij deze vorm is er sprake van een verhoogde vasculaire permeabiliteit waardoor er gemakkelijk water van de ene kant naar de andere kant kan gaan. Daarnaast gaan ook veel ontstekingscellen naar de ontsteking toe: die trekken vocht aan en zorgen ook voor zwelling. Hiernaast kan oedeem nog onderscheiden worden in verschillende categorieën:
    Subcutaan oedeem: bij gebieden met een hoge hydrostatische druk.

    Zwaartekracht afhankelijk oedeem: zwaartekracht-afhankelijke distributie. Vaak bij hartfalen en nierdisfunctie (tast grote delen van lichaam aan).
    Pulmonair oedeem: hierbij zijn er problemen met het linkerventrikel (forward-failure), waardoor er stase van bloed optreedt in de pulmonaire circulatie. Dit leidt tot pulmonair oedeem. Deze vorm kan ook voorkomen bij nierfalen, luchtweginfecties en allergische reacties.
    Hersenoedeem: hierbij zwellen de hersenen op, leidend tot smalle sulci en opeengepakte gyri. Het kan ontstaan door trauma, obstructie of encefalitis.

    Hyperemie en stuwing

    Beide begrippen staan voor een lokaal verhoogd bloedvolume in een bepaald weefsel. Hyperemie is een actief proces: door dilatatie van arteriolen ontstaat er een grotere bloedtoevoer. Het weefsel bij deze arteriolen is roder dan normaal door de grotere bloedtoevoer. Stuwing hiertegen is een passief proces dat plaatsvindt door een verzwakte veneuze terugvloed naar het hart. Dit kan door een obstructie veroorzaakt worden. Deze weefsels bevatten een blauw-rode kleur doordat er een opstapeling ontstaat van zuurstofarm hemoglobine. Hierbij is er sprake van een verlaagde outflow.
    Vaak komen stuwing en oedeem tegelijkertijd voor. Wanneer stuwing langdurig voorkomt, kan er een chronisch zuurstofgebrek (hypoxie) ontstaan, waardoor de cellen/weefsels zullen degenereren en eventueel dood zullen gaan.

    Er zijn verschillende vormen van stuwing:

    1. Acute pulmonaire stuwing: hierbij zitten de alveolaire capillairen vol met bloed, waarbij er alveolair oedeem kan ontstaan in de septa.

    2. Chronische pulmonaire stuwing: alveolaire capillairen lopen vol met bloed, waarbij de septa verdikken en een toegenomen hoeveelheid bindweefsel bevatten. Hiernaast kunnen de ruimtes tussen de alveoli een grote hoeveelheid aan macrofagen bevatten.

    3. Acute hepatische stuwing: hierbij raken de centrale vene en de sinusoïden gezwollen, waardoor er centrale degeneratie kan plaatsvinden van de hepatocyten.

    4. Chronische passieve stuwing: hierbij worden de leverkwabben roodbruin.

    Hemorrhage/bloeding

    Hierbij treedt het bloed buiten de vaten naar de extravasculaire ruimte. Het kan extern of binnen een bepaald weefsel plaatsvinden. Van het hematoom, ofwel de blauwe plek, bestaan verschillende vormen:

    • 1-2 mm bloedingen: in de huid en muceuze membranen worden deze petechiën genoemd. Ze worden geassocieerd met een lokaal verhoogde intravasculaire druk of stollingsfactorproblemen.

    • 3-5 mm bloedingen: purpura. Geassocieerd met dezelfde problemen als hierboven en daarnaast trauma of vasculaire inflammatie.

    • 1-2 cm bloedingen: deze subcutane hematomen worden ecchymoses genoemd. De erytrocyten in de bloeding worden gefagocyteerd en omgezet tot macrofagen. Het hemoglobine (rood/blauw) wordt omgezet tot bilirubine (blauw/groen, wat wordt omgezet tot hemosiderine (goud/bruin). Kleuren stellen de veranderingen voor van het hematoom.

    Grotere accumulaties van bloeding een van de lichaamsholtes worden hem(at)othorax, hemopericardium, hemoperitoneum en hemarthrosis genoemd. Hierbij is een hele grote afbraak van rode bloedcellen en een verhoogd bilirubinegehalte. Wanneer de bloedingen erger worden, kan dit zorgen voor een hypovolemische shock.

    Embolie

    Een embolus is een vrije, intravasculaire, vaste, vloeistof of gasvormige massa dat door het bloed wordt getransporteerd van zijn oorspronkelijke plaats. Bijna 99% van de embolieën bevat een deel van een bloedprop (trombus). Ze kunnen zorgen voor gedeeltelijke of gehele vasculaire occlusie. Er zijn verschillende vormen te onderscheiden:

    Longembolie

    Bij 95% van de patiënten komt de veneuze embolus van een bloedprop uit een diepliggende vene boven de knie. De grootte van de embolus bepaalt waar deze uiteindelijk vast komt te zitten. Patiënten die een longembolie hebben gehad, hebben vaak een groot risico op het krijgen van meerdere embolieën. Over het algemeen doen de meeste embolieën geen kwaad omdat ze klein zijn (60-80%). Deze kunnen zich zo opstapelen dat er een fibreus web ontstaat. Wanneer meer dan 60% van de pulmonaire circulatie verstopt is, kan cor pulmonale of een plotseling dood voorkomen. Het kan ook een infarct veroorzaken. Dit komt voornamelijk voor bij een embolieën in kleine eind-arteriolaire pulmonale vertakkingen. Wanneer er veel over een bepaalde tijd aanwezig zijn, kan dit zorgen voor pulmonaire hypertensie, waardoor problemen in het rechterventrikel kunnen ontstaan.

    Systemische trombo-embolieën

    Bij deze vorm wordt er gewezen op de embolieën in de arteriële circulatie. 80% van deze embolieën komt van een trombus die vast zit/zat aan een deel van het endocardium. Een klein deel van deze embolieën komt uit de venen, maar komen uiteindelijk in de arteriële circulatie uit via interventriculaire defecten. Deze embolieën worden paradoxale embolieën genoemd. Deze embolieën kunnen zich over een groter deel verspreiden, maar hun voorkeur gaat voornamelijk naar de onderste extremiteit en de hersenen. Arteriële embolisatie kan zorgen voor een infarct van de aangetaste weefsels. Hiernaast kunnen de embolieën verschillen van samenstelling:

    Vetembolie

    Vet- en mergembolie treden allebei op bij 90% van de individuen die ernstige beschadigingen aan het skelet hebben opgelopen, maar bij minder dan 10% worden er klinische bevindingen gedaan. Het vet embolie syndroom wordt gekarakteriseerd door pulmonaire insufficiëntie, anemie en een trombocytopenie (te kort aan bloedplaatjes). De symptomen verschijnen 1-3 dagen na de opgelopen schade waarbij men last kan krijgen van dyspneu, tachypnoe en tachycardie.

    Luchtembolie

    Hierbij zorgen gasbellen voor een obstructie. Een klinisch effect wordt bereikt bij meer dan 100mL lucht. De bellen kunnen samenvoegen tot een schuimige massa die groot genoeg is om grote bloedvaten te versperren. Wanneer lucht bij een hoge druk ingeademd wordt, zal een grote hoeveelheid worden opgelost in het bloed en de weefsels. Wanneer een duiker dan te snel omhoog gaat, zal het stikstof in de weefsels expanderen en als een bubbel in het bloed komen.
    In de longen kunnen gasbubbels voor oedeem en bloedingen zorgen, die op hun beurt kunnen leiden tot respiratoire insufficiëntie.

    Embolie in het vruchtwater

    Dit is een ernstige, maar niet vaak voorkomende complicatie bij een bevalling. Het begin wordt gekarakteriseerd door een plotseling ernstige dyspneu en hypotensieve shock, gevolgd door epileptische aanvallen en een coma. Wanneer een patiënt het begin overleeft, zal pulmonair oedeem ontstaan. Het ontstaat doordat vruchtwater in de circulatie van de moeder komt door een scheur in het membraan van de placenta en in de baarmoederaderen.

    Infarct

    Een infarct is de term voor het afsterven van weefsel, wat optreedt als gevolg van zuurstofgebrek door een ontoereikende bloedvoorziening (ischemie). Bijna 99% wordt veroorzaakt door een trombose of door een embolie en door een arteriële occlusie. Een infarct kan ook door andere gebeurtenissen ontstaan, zoals vasculaire compressie door een tumor, vasculaire compressie door oedeem of een traumatische scheur in een bloedvat. Hoewel veneuze trombose voor een infarct kan zorgen, zorgt het over het algemeen voor een veneuze obstructie en stuwing. Infarcten die door veneuze trombose ontstaan komen over het algemeen voor bij organen met één enkel veneus uitvoerend kanaal.

    Een infarct wordt geclassificeerd op basis van kleur en de aanwezigheid van een infectie door micro-organismen:

    Rood infarct

    • Bij veneuze afsluiting
    • Bij losse weefsels, zoals de longen, waarbij bloed kan verzamelen in het geïnfarceerde gedeelte.
    • In weefsels met een dubbele bloedtoevoer, zoals de longen en de dunne darm, waarbij bloed van de onbeschadigde bloedvaten naar het necrotische gedeelte kan gaan (dit is niet voldoende om de schade/ischemie ongedaan te maken).
    • In weefsels waar eerder obstructie heeft plaats gevonden door een slechte veneuze afvloed.
    • Wanneer de bloedstroom weer wordt hervat in een gedeelte waar een arteriële afsluiting heeft gezeten.

    Wit infarct

    • Dit ontstaat bij arteriële afsluiting van een massief orgaan, zoals het hart, de nier en de milt. De samenstelling van het weefsel beperkt de hoeveelheid bloeding die kan ontstaan.

    Septisch infarct

    • Deze treden op wanneer een ziek deel van een hartklep een embolie veroorzaakt of als micro-organismen zorgen voor een abcesachtige ontsteking.  

    Er zijn verschillende factoren die het beloop van een infarct kunnen beïnvloeden, waaronder:

    • De vasculaire voorziening: Wanneer een bepaald orgaan geen dubbele voorziening bevat als de lever en de longen, kan dit ervoor zorgen dat een obstructie al snel zal leiden tot een infarct. Dit is het geval bij de nieren en milt (end-arterial circulation).

    • De snelheid waarmee de occlusie zich ontwikkelt: Wanneer de ontwikkeling langzaam verloopt, kunnen er natuurlijke by-passes (collaterale circulatie) gevormd worden.

    • Gevoeligheid voor hypoxie

    • Zuurstofinhoud van het bloed: De partiële druk van zuurstof in het bloed bepaalt ook het resultaat van een vasculaire occlusie.

    • Shock: Shock wordt gekenmerkt door systemische hypoperfusie (verminderde bloedtoevoer naar een orgaan): het kan veroorzaakt worden door verlaagde cardiale output of door verminderd circulerend bloed volume. Het resultaat hiervan is hypotensie, verminderde perfusie (aanvoer van voedingsstofrijk bloed) en cellulaire hypoxie (te lage zuurstoftoevoer). De resultaten van shock zijn reversibel zolang de shock niet te lang duurt. Als de shock langere tijd plaatsvindt, is de schade irreversibel.

    Typen shock

    • Cardiogeen
    • Hypovolemisch
    • Septisch
    • Neurogeen
    • Anafylactisch

    Klinische voorbeelden

    • myocard infarct
    • aritmie
    • harttamponnade
    • pulmonaire embolie
    • ventriculaire ruptuur
    • bloeding
    • vochtverlies (overgeven, diarree, brandwonden, trauma)
    • overweldigende infectie
    • endotoxische shock
    • gram-positieve septicemie
    • schimmelsepsis
    • superantigenen (toxische shock syndroom)
    • anesthetisch ongeluk
    • ruggenmerg schade
    • systemische vasodilatatie en verhoogde vasculaire permeabiliteit
    • principiële mechanismen

    Het falen van de myocardpomp dat resulteert in intrinsieke myocardschade, extrinsieke druk of obstructie van bloedvaten die het bloed weg vervoeren

    Inadequaat bloed of plasma volume

    Perifere vasodilatatie; endotheel acticatie/schade; verspreidde intravasculaire stolling; acticatie van cytokine cascades.
    Verlies van vasculaire toon en perifeer lekken van bloed veroorzaakt door een IgE hypersensibiliteit

    Pathologie van septische schok

    Septische shock is het resultaat van de reactie van het aangeboren immuunsysteem op een pathogeen in het bloed of een andere specifieke locatie.
    De meeste septische shocks zijn endotoxische shocks. Endotoxinen zijn bacterie-wand-lipopolysachariden (LPS) die bestaan uit een toxische vetzuurkern, gelijk aan alle gramnegatieve bacteriën, en een polysacharidecoat.

    Vrije LPS bindt aan het circulerend LPS binding proteïne. Deze koppeling bindt aan de receptoren CD14 van monocyten, macrofagen en neutrofielen.
    Binding aan CD14 zorgt voor intracellulaire signalering door middel van toll like receptorproteïne 4 (TLR4). Dit activeert vervolgens de cytokinen IL1 en TNF. Deze cytokinen hebben invloed op het endotheel en zorgen voor een verminderde productie van stollingsfactoren.
    TLR-gemedieerde activatie prikkelt het immuunsysteem, maar de effecten op LPS kunnen leiden tot een fatale shock.

    Bij ernstige infecties kan deze activatie van cytokinen leiden tot koorts en een verhoogde productie van neutrofielen. Bij nog hogere LPS in het bloed treedt het septische shock syndroom op. Dezelfde cytokinen en mediatoren treden op en zorgen voor:

    1. Systemische vasodilatatie (hypotensie)
    2. Verminderde myocardcontractiliteit
    3. Wijdverspreide endotheelschade en activatie die zorgt voor systemische leukocytadhesie en schade van alveolaire capillairen in de long
    4. Activatie van het bloedstollingsysteem, dat uiteindelijk leidt tot verspreide intravasculaire stolling (DIC = disseminated intravascular coagulation)

    DIC leidt tot multi-orgaan systeem falen: dit brengt schade aan de lever, nieren en centraal zenuwstelsel. Als de oorzaak van de sepsis dan niet snel wordt aangepakt, overlijdt de patiënt.

    Superantigenen kunnen ook een syndroom veroorzaken dat gelijk is aan het septische shocksyndroom. Superantigenen zijn polyklonale T-lymfocytactivators die systemische inflammatoire cytokinecascades aanzetten. Deze cascades zijn gelijk aan de cascades die aangezet als reactie op LPS.

    Stadia van shock

    Non-progressieve stadium: de compensatoire mechanismen worden geactiveerd zodat de organen nog van zuurstof worden voorzien.
    Verschillende neuro-humorale mechanismen helpen om de cardiac output en bloeddruk op peil te houden. Gevolg: tachycardie (verhoogde hartslag) perifere vasoconstrictie en renale concentratie van vloeistof.

    Een progressief stadium: weefsel-hypoperfusie (er stroomt geen bloed meer naar de weefsels) en verslechtering van het evenwicht van circulatie en metabolisme
    Intracellulaire aerobe respiratie wordt vervangen door anaerobe glycolyse, waardoor er melkzuuracidose optreedt. Dit verlaagt de weefsel pH verandert de vasomotore respons.
    Een irreversibel stadium: dit begint nadat er weefselschade is opgetreden die zo ernstig is dat zelfs als de hemodynamische defecten worden hersteld, overleven onmogelijk is.
    Wijdverspreide celschade wordt weergegeven door lysosomale enzym lekkage. De myocardfunctie verslechtert gedeeltelijk door de NO-synthese.

    In hypovolemische en cardiogene shock: hypotensie, d.w.z. een zwakke, snelle pols, tachypneu (verhoogde ademhalingsfrequentie) en een klamme, cyanotische huid
    In septische shock: warme huid, urineverlies, elektrolyten disbalans.

    Hemostase/Bloedstolling

    In geval van schade gebeuren de volgende dingen:

    • Korte arteriële vasoconstrictie als een reflex van neurogene mechanismes, die versterkt wordt door de secretie van lokale factoren als endotheline.

    • Bloedplaatjes binden zich aan de subendothele extracellulaire matrix (middels de Von-Willebrand factor) en worden hiernaast ook geactiveerd. Deze activatie zorgt voor vormverandering en het vrijlaten van secretoire granula.

    • Primaire hemostase: de uitgescheiden producten werven in een paar minuten meerdere bloedplaatjes (accumulatie) zodat er een hemostatische prop ontstaat.

    • Secundaire hemostase: weefselfactor (tromboplastine) zorgt samen met factor VII voor de generatie van trombine die fibrinogeen omzet tot fibrine waardoor een fibrinenetwerk kan ontstaan. Trombine zorgt ook voor verdere productie van bloedplaatjes en uitscheiding van granula .

    • Gepolymeriseerde fibrine en aggregatie van bloedplaatjes zorgt voor een gehele afsluiting. Met behulp van mechanismes met een tegengestelde werking wordt de hemostatische prop geëlimineerd.

    Antitrombotische eenheden: onder normale omstandigheden zorgt het endotheel ervoor dat er een normale bloedstroom mogelijk is, door ook de blokkade van trombocytenadhesie en -aggregatie. Het endotheel blokkeert dan de stollingscascade en ruimt kleine bloedpropjes actief op.

    Anti-trombocyteneffect: een normaal endotheel zorgt ervoor dat bloedplaatjes en stollingsfactoren zich niet aan het trombofiele subendotheel (extracellulaire matrix) kunnen binden. Wanneer bloedplaatjes geactiveerd zijn, zal het onbeschadigde endotheel prostacycline (PGI2) en NO uitscheiden. Dit zijn vasodilatoren en deze werken de trombocytenaggregatie tegen. Daarnaast bevatten endotheelcellen adenosine difosfatase, dat ADP afbreekt en daarmee bijdraagt aan de inhibitie van de bloedplaatjes.

    Anti-stollingseffect: membraangeassocieerde heparine-achtigemoleculen hebben samen met trombomoduline (een specifieke trombinereceptor) een effect op de antistolling. Het membraan geassocieerde heparineachtige molecuul heeft indirect effect. Het zijn cofactoren, die een interactie aangaan met antitrombine III, waardoor trombine, factor Xa en verschillende andere stollingsfactoren (later besproken) geïnactiveerd worden.  Thombomoduline reageert ook indirect. Door een binding aan te gaan met trombine kan het ervoor zorgen dat trombine van procoagulante factor omgezet wordt tot een anticoagulante zodat het anticoagulante proteïne C wordt gevormd. Geactiveerd proteïne C zorgt voor inhibitie van de stollingsfactoren Va en VIIIa.

    Fibrinolytische effecten: de endotheelcellen produceren weefsel-type plasminogeen activator (tissue-type plasminogen activator, t-PA), die de fibrinolyse promoten.

    Protrombotische eenheden

    Pro-coagulant effect: door de endotheelcellen wordt tissue factor uitgescheiden. Dit stimuleert de stollingscascade. Als factor IXa en Xa worden gebonden door het endotheel, wordt het effect van deze stollingsfactoren versterkt.

    Antifibrinolytisch effect: er worden door het endotheel stoffen afgegeven die de plasminogeen activatoren remmen. Dit zijn de inhibitors of plasminogen activators (PAI’s), die de fibrinolyse remmen.

    Bloedplaatjes

    Wanneer deze niet geactiveerd zijn, zijn het membraangebonden dunne schijven, die verscheidene glycoproteïne receptoren bevatten.

    De bloedplaatjes bevatten twee typen granula:

    1. Alfa-granula: Deze bevatten P-selectine moleculen , die zorgen voor adhesie en productie van fibrinogeen, fibrinectine, factoren V en VIII en TGF-alfa (transforming growth factor alfa).
    2. Delta-granula: bevatten ADP en ATP, Ca2+, histamine, serotonine en epinephrine.

    Om in contact te komen met de eiwitten van het subendotheel moeten de bloedplaatjes 3 reacties ondergaan:

    • Adhesie en vormverandering: binding met Von-Willebrand factor (vWF) is van belang omdat daarmee de trekkende kracht van de bloedstroom overwonnen kan worden ook al kunnen bloedplaatjes zich gelijk binden aan het collageen.

    • Secretie: na adhesie vindt secretie plaats van de granula. Het vrijlaten van delta granuli is zeker belangrijk voor de stollingscascade (Ca2+) en voor de aggregatie van bloedplaatjes met ADP als een mediator.

    • Aggregatie: Bij de accumulatie van bloedplaatjes is thromboxane A2 (TXA2) van belang. Dit zorgt voor een belangrijke stimulus. De primaire hemostatische prop wordt ontwikkeld door een autokatalytisch proces dat door ADP en TXA2 wordt beïnvloed. Een irreversibele prop ontstaat na activatie van de stollingscascade. Dit komt doordat trombine aan een oppervlakte receptor van de bloedplaatjes bindt, waardoor er steeds meer accumulatie zal plaatsvinden.

    Wanneer ADP aan zijn receptor wordt gebonden zorgt dit voor een verandering van de glycoproteïne IIb-IIIa receptoren(oppervlakte receptoren) waardoor fibrinogeen eraan gebonden kan worden. Fibrinogeen zorgt namelijk voor het samenvoegen van bloedplaatjes en het vormen van grote accumulaties.

    Stollingscascade

    Deze cascade is het derde component van het hemostatische proces. De cascade is een uitgebreide serie van enzymatische omzettingen. Trombine is het belangrijkste enzym in het stollingsproces. Deze zorgt er namelijk voor dat het oplosbare plasma-eiwit fibrinogeen in fibrine kan worden omgezet. De fibrinemonomeren polymeriseren tot een onoplosbare gel waar bloedplaatjes aan kunnen plakken en voor een secundaire hemostatische prop kunnen zorgen.

    Elke reactie in het stollingsproces resulteert uit een assemble van een complex dat uit een enzym, substraat en cofactor bestaat. Het bloedcoagulatieschema bestaat uit een intrinsieke, extrinsieke en gemeenschappelijke pathway met als hoofdpunt factor X. De extrinsieke weg heeft een exogene trigger nodig. De intrinsieke heeft alleen factor XII (Hageman factor) nodig voor een trombogeen oppervlak. De extrinsieke weg is de belangrijkste weg van de twee, die na weefselschade wordt geactiveerd door factor III, tromboplastine.

    Er zijn twee standaardmetingen voor de verschillende wegen:

    1. PT: protrombine tijd – hierbij wordt gekeken naar de activiteit van de eiwitten in de extrinsieke weg. De eenheid hierbij is international normalised ratio (INR).

    2. PPT: partiële tromboplastine tijd – hierbij wordt er gekeken naar de activiteit van de eiwitten in de intrinsieke weg. De eenheid hierbij is seconden (sec).

    Wanneer het stollingsproces is geactiveerd, moet het ervoor zorgen dat het aan de kant van de schade plaatsvindt zodat er niet teveel stolling plaats zal vinden. De controle over de stolling vindt plaats via 3 categorieën van natuurlijke antistolling:

    • Antitrombines: deze inhiberen de activiteit van trombine en andere serine proteases, factoren IXa, Xa, XIa en XIIa.

    • Proteïnen C en S zijn twee vitamine K-afhankelijke eiwitten die de cofactoren Va en VIIIa inactiveren. Proteïne C wordt normaal door trombomoduline geactiveerd met proteïne S als profactor voor activatie van proteïne C.

    • TFPI: een eiwit dat door het endotheel wordt uitgescheiden. Het inactiveert factor Xa.

    Trombose

    Er zijn 3 primaire mechanismen die propvorming kunnen beïnvloeden, de zogenaamde Virchow’s trias:

    1. Endotheelschade

    In het hart en de arteriële circulatie is dit één van de oorzaken voor trombusvorming omdat de snelle bloedstroom normaliter ervoor zorgt dat er geen adhesie kan plaatsvinden van bloedplaatjes. Wanneer endotheelschade tot blootstelling van het subendotheel leidt, kan dit ertoe leiden dat bloedplaatjes zich eraan gaan hechten, een weefselfactor vrij komt en er een lokale depletie zal ontstaan van plasminogeenactivatoren.

    1. Afwisseling in normale bloedstroom

    Turbulentie kan zorgen voor arteriële en cardiale trombose door het veroorzaken van endotheelschade of disfunctie. Hiernaast kan dit veroorzaakt worden door stase. Dit is de stroomverlaging of stop van vloeistof. Stase en turbulentie zorgen dat de normale bloedstroom wordt tegengegaan en dus ook het contact van de bloedplaatjes met het endotheel. Het zorgt ook voor het vertragen van de invoer van stollingsfactor inhibitoren. De activatie van endotheelcellen wordt bevorderd, waardoor lokale trombose of leukocytadhesie kan plaatsvinden.

    1. Hypercoagulatie (verhoogd stollingsvermogen)

    Hiervan is er een primaire en secundaire vorm. De primaire vorm wordt over het algemeen veroorzaakt door overerving van oorzaken voor hypercoagulabiliteit, zoals mutaties in het factor V gen en het protrombine gen. Hiernaast kan men ook defecten hebben in het proteïne C en S eiwit. Deze komen echter zelden voor. Bij de secundaire vorm is de oorzaak multifactorieel.

    Wanneer een patiënt de initiële trombose overleeft, zullen de 4 volgende gebeurtenissen plaatsvinden bij trombi:

    Propagatie: trombi is een accumulatie van bloedplaatjes en fibrine, waardoor bloedobstructie kan plaatsvindt.

    Embolisatie: De trombi worden gesplitst en getransporteerd naar andere plekken

    Dissolutie: De trombi worden verwijderd door fibrinolytische activiteit

    Organisatie en recanalisatie: trombi veroorzaken ontsteking en fibrose.

    Er bestaan verschillende vormen van trombose:

    Arteriële trombose

    Ze zijn vaak occlusief. Arteriële trombi worden geproduceerd door activatie van bloedplaatjes en bloedstolling. Cardiale trombi kunnen ontstaan na een myocardinfarct.

    Veneuze trombose

    Hierbij zijn de trombi vaak onveranderlijk occlusief. Het wordt vaak veroorzaakt door activatie van het stollingsproces, waarbij de bloedplaatjes een secundaire rol spelen. Ze bevatten over het algemeen meer verstrikt geraakte erytrocyten. Het worden hierdoor ook wel rode trombi genoemd. Deze trombi kunnen zorgen voor congestie en oedeem in het vaatbed dat distaal ligt t.o.v. de obstructie.

    Pathologie: Wat zijn cellulaire reacties op stress? Adaptatie, letsel, en dood - Chapter 1

    Pathologie: Wat zijn cellulaire reacties op stress? Adaptatie, letsel, en dood - Chapter 1

    Pathologie: een introductie

    Pathologie verklaart waarom signalen en symptomen zich voordoen. Dit vormt de basis voor zorg in de kliniek en therapieën. De vier aspecten van het ziekteproces vormen de kern van de pathologie. Hieronder vallen de oorzaak (etiologie), de mechanismen achter de ontwikkeling ervan (pathogenese), de biochemische en structurele veranderingen (moleculair en morfologisch) en de functionele consequenties (klinische manifestatie). De meeste ziekten worden door meerdere factoren veroorzaakt, waaronder zowel externe als genetische factoren.

    • Etiologie valt uiteen in twee factoren: genetisch (mutatie, ziekte-geassocieerde variaties in het gen, polymorfisme) en verworven (infectieus, voeding, chemisch, psychisch).

    • Pathogenese wijst op de opeenvolging van gebeurtenissen, die tot een respons leiden, van stimulus tot uiteindelijk het tot expressie komen van de ziekte. Dit speelt een belangrijke rol binnen de pathologie, omdat de uiteindelijke oorzaak alleen nog niet vertelt wat de functie van een gen is.

    • Morfologie wijst op een verandering in structuur van een cel of weefsel. Dit kan kenmerkend zijn voor een bepaalde ziekte of etiologisch proces.

    • Moleculaire analyse kan de genetische verschillen weergeven tussen bijvoorbeeld twee tumoren. Op deze manier is het ook het gedrag en daarmee de reactie ervan op verschillende therapieën te voorspellen.

    • Klinische manifestatie is het optreden van functionele abnormaliteiten, welke worden veroorzaakt door genetische, biochemische en structurele veranderingen.

    De condities van een normale cel worden binnen een nauw bereik gehouden. Dit noemen we homeostase. Adaptatie is het reversibel aanpassen van een cel aan fysiologische stress of pathologische stimuli. Dit kan doordat een cel groter wordt (hypertrofie), functioneel actiever, vermeerdert in aantal (hyperplasie), kleiner en minder actief wordt (atrofie) of in differentiatie verandert (metaplasie). Er ontstaat celschade wanneer de cel zich niet verder kan adapteren of door blootstelling aan schadelijke stoffen of stress.

    Als de stimulus blijft of in het begin al te sterk was, kan deze schade irreversibel worden en sterft de cel af. Adaptatie, reversibele celschade en celdood zijn stadia in het proces van een progressieve stoornis. Er zijn veel verschillende oorzaken, die kunnen leiden tot celdood. Dit kan op twee manieren gebeuren, namelijk door necrose en apoptose.

    Voedseltekort stimuleert een adaptieve reactie genaamd autofagie. Stress induceert veranderingen in de cel anders dan de typische adaptaties. Veroudering van een cel zorgt ook voor veranderingen. Deze metabolische veranderingen of chronische veranderingen gaan vaak gepaard met intracellulaire ophoping van bepaalde stoffen.

    Hypertrofie is het groter worden van cellen door verhoogde productie van cellulaire eiwitten, waardoor de grootte van het orgaan ook toeneemt. Dit gebeurt vooral bij (spier)cellen die niet kunnen delen. Hypertrofie kan fysiologisch of pathologisch zijn doordat het functioneel nodig is of door stimulatie van hormonen en groeifactoren. In spieren gebeurt dit vooral wanneer ze meer worden belast. Hierop reageert de spiercel door meer myofilamenten aan te maken. In de uterus stimuleren hormonen de groei van de uterus tijdens een zwangerschap.

    Mechanische sensoren (stimulus: verhoogde last), groeifactoren en vasoactieve agonisten induceren samen de verhoogde synthese van eiwitten voor spieren. Hypertrofische cellen kunnen tevens de vorm van het samentrekkende eiwit veranderen in een foetale of neonatale vorm. De genen, die destijds tot expressie kwamen, worden dan niet meer down-gereguleerd. Als vergroting van de spier niet meer opweegt tegen de verhoogde last, ontstaat afbraak en verlies van vezels door apoptose of necrose. Onder selectieve hypertrofie valt ook selectieve hypertrofie van een suborganel in de cel. Het endoplasmatisch reticulum kan bijvoorbeeld gaan hypertrofiëren als adaptieve reactie op bepaalde medicijnen, waardoor er meer enzymen beschikbaar zijn om het af te breken. De adaptatie zorgt ervoor dat het lichaam de volgende keer minder op dit medicijn reageert.

    Hyperplasie is een toename in het aantal cellen en daardoor een orgaan vergroten. Hypertrofie en hyperplasie komen vaak samen voor, doordat ze reageren op dezelfde externe stimulus. Wanneer de cel niet alleen in staat is om groter te worden, maar zich ook kan delen, zullen beide processen optreden. Er zijn twee soorten fysiologische hyperplasie. Hormonale hyperplasie (puberteit; proliferatie klierepitheel in de borsten) zorgt voor een betere functionele capaciteit van het weefsel, terwijl compenserende hyperplasie (in de lever) ervoor zorgt dat bepaald weefsel weer aangroeit na beschadiging of een medische uitsnijding. Een overmaat aan hormonen of groeifactor veroorzaakt de meeste vormen van pathologische hyperplasie. Er is hier dan sprake van een gecontroleerde verstoorde balans, die verdwijnt als de hoeveelheid hormonen/groeifactor vermindert. Kanker is het niet hetzelfde als hyperplasie: bij hyperplasie blijft de celdeling gecontroleerd, terwijl deze bij kanker ongecontroleerd is. De kans op het ontwikkelen van kanker is wel verhoogd in hyperplastisch weefsel. Virale infecties hebben ook als kenmerkende reactie het ontstaan van hyperplasie, doordat ze cellen beïnvloeden die groeifactor aanmaken. Hyperplasie ontstaat door een overmaat aan groeifactor of door een verhoogde output van stamcellen.

    Atrofie is het verkleinen van een orgaan doordat het afneemt in hoeveelheid en grootte van cellen. Fysiologische atrofie vindt gedurende het hele leven plaats. Pathologische atrofie kan ontstaan door verschillende oorzaken:

    • Verminderde belasting door bijvoorbeeld bedrust. Eerst zal de grote van de cellen afnemen bij langere tijd zal ook het aantal cellen afnemen.

    • Verminderde innervatie

    • Verminderde bloedtoevoer. Ouderdomsatrofie ontstaat in de hersenen op late leeftijd door atherosclerose.

    • Tekort aan voedingsstoffen. Bij extreem voedseltekort worden spieren als brandstof opgebruikt. Patiënten met chronische ontstekingsziekten en kanker hebben een overschot aan TNF, wat de eetlust vermindert en vetten uitput, wat ook leidt tot spieratrofie.

    • Verminderde endocriene stimulatie. Verlies aan oestrogenen (stimulatie) leidt tot menopauze; atrofie vrouwelijke geslachtsorganen.

    • Druk. Compressie (een tumor) veroorzaakt in omliggende gebieden atrofie.

    Cellulaire veranderingen zijn overal gelijk. Cellen worden kleiner van grootte en organellen, waardoor de cel minder nodig heeft om te overleven en dus alleen een verlies heeft van functie.

    Atrofie ontstaat wanneer er te weinig eiwitten worden aangemaakt (verlaagde metabole activiteit) en teveel afgebroken (verhoogde activiteit van het ubiquitine-proteasoom pad). Voedseltekort of verminderde belasting stimuleert de koppeling van cellulaire eiwitten aan het kleine peptide ubiquitine, waarna het in de proteasoom wordt afgebroken. Autofagie, het proces waarbij een ‘verhongerde’ cel zichzelf opeet op zoek naar voedingsstoffen, gaat vaak samen met atrofie. Autofagische vacuolen bevatten componenten van de cel en kunnen fuseren met een lysosoom. Lysosomale enzymen kunnen deze componenten verteren of ze blijven over waarna ze als sarcofagen in het cytoplasma aan het celmembraan gekoppeld liggen. Bruine atrofie is de verkleuring van het weefsel door een grote hoeveelheid van deze restlichaampjes in sarcofagen.

    Metaplasie

    Metaplasie is een reversibele verandering van een gedifferentieerd celtype in een ander celtype. De meest voorkomende verandering is van cilindrisch epitheel naar plaveiselepitheel en ontstaat na chronische irritatie, zoals in de luchtpijp bij rokers, omdat dit epitheel beter kan overleven onder deze omstandigheden. Dit is dus een vorm van adaptatie, waarbij sommige functies verloren kunnen gaan. De factoren voor het ontstaan van metaplasie geven ook aanleiding tot het ontwikkelen van kwaadaardige transformaties in dit epitheel. Metaplasie ontstaat door het reprogrammeren van stamcellen in normaal weefsel of in niet-gedifferentieerde mesenchymale cellen in het bindweefsel. De voorlopercellen doorlopen dus differentiatie via een nieuwe pathway. Cytokinen, groeifactoren en componenten in de extracellulaire matrix stimuleren de expressie van bepaalde genen en bepalen zo waartoe een cel zich uiteindelijk zal ontwikkelen. Celschade is het gevolg van stress, blootstelling aan schadelijke stoffen of intrinsieke abnormaliteiten. Er is sprake van reversibele celschade, wanneer de schade verdwijnt als de stimulus wordt verwijderd. Dit zie je meestal in vroegere stadia of milde vormen van schade. Een van de kenmerken hiervan is een verminderde oxidatieve fosforylatie, waardoor er ook minder energie in de vorm van ATP kan worden opgeslagen. Daarnaast zwelt de cel op door veranderingen in ionconcentratie en de influx van water, wat ook tot verandering in de intracellulaire organellen kan leiden.

    Celdood

    Door langdurige schade verandert de cel irreversibel en sterft de cel af (celdood). Celdood wordt bewerkstelligd door necrose of apoptose. Bij necrose is het membraan ernstig beschadigd. Hierdoor komen lysozomale enzymen in de cel, waar ze de inhoud verteren, zodat deze naar buiten lekt. Dit is altijd pathologisch. Als het DNA of de cellulaire eiwitten onherstelbaar beschadigd zijn, dood de cel zichzelf met apoptose. Hierbij ontbindt de kern zich en valt de cel verder in fragmenten uiteen. Dit maakt het makkelijk om de stukjes te verwijderen. Apoptose is een normaal functioneel proces en heeft dus niet altijd iets te maken met celschade. Tot slot kan celdood ook het resultaat zijn van autofagie.

    De meeste oorzaken voor celschade zijn in te delen in een aantal groepen:

    • Te weinig zuurstof (hypoxie). Afhankelijk van de ernst ondervindt een cel veranderingen, schade of sterf af. Dit kan ontstaan door een verminderde bloedstroom (ischemie), slechte zuurstofvoorziening of verminderde capaciteit van bloed om zuurstof mee te nemen.

    • Fysische factoren. Omgevingsfactoren die celschade kunnen veroorzaken, zijn extreme temperaturen (verbranden/bevriezen), plotselinge veranderingen in luchtdruk of straling.

    • Chemische factoren: wanneer stoffen in hypertonische concentraties voorkomen, de ionbalans verstoren of giftig zijn kan dit de cel ook beschadigen.

    • Infecties. Virussen tot bacteriën, schimmels en zelfs wormen veroorzaken ieder op een verschillende manier schade.

    • Immunologische reacties. Schadelijke reacties op lichaamseigen stoffen (auto-immuunziekte) en afweerreacties kunnen de cel of het weefsel ook beschadigen.

    • Genetische stoornissen. Genetische abnormaliteiten kunnen celschade veroorzaken doordat bepaalde functionele eiwitten niet goed werken. Daarnaast kan het de gevoeligheid voor chemicaliën of andere omgevingsfactoren beïnvloeden.

    • Verstoorde voedselbalans. Verstoorde voedselbalans is de voornaamste oorzaak voor celbeschading, met name in derdewereldlanden. Een overmaat aan voedingsstoffen leidt tot atherosclerose en obesitas, welke worden geassocieerd met verschillende ziekten.

    Het duurt een even voordat een bepaalde oorzaak tot morfologische verandering leidt. Deze tijd hangt af van de sensitiviteit. Daarnaast duurt het langer voordat necrose optreedt dan andere reversibele veranderingen. De meest gebruikelijke stimuli leiden via necrose tot celdood. Apoptose heeft een meer unieke functie.

    Belangrijke kenmerken van reversibele schade zijn opgezwollen cellen en organellen, blaasjes in het membraan, het loslaten van ribosomen van het endoplasmatisch reticulum (ER) en samenklonteren van chromatine in de kern. Het opzwellen is een resultaat van de verstoorde ion- en vloeistofbalans, doordat de ionpompen niet meer goed werken. Daarnaast ontstaan vaak vetvacuolen met vet in cellen die een rol spelen in het vetmetabolisme. Er zijn dus op 4 plaatsen in de cel structurele veranderingen aan: plasmamembraan (verlies microvilli/blaasjes), mitochondrium (gezwollen), ER (vergroot), kern (opsplitsing).

    Necrose

    Necrose is het gevolg van het verlies van ruimtelijke structuur van intracellulaire eiwitten (denaturatie) en enzymatische vertering van de dodelijk beschadigde cel. Necrotische cellen kunnen hun membraan niet goed meer in stand houden, waardoor delen vaak de cel uit lekken. De enzymen die de necrotische cel vervolgens verteren zijn afkomstig uit de lysosomen van de cel zelf en uit leukocyten. Vertering van componenten van de cel duurt uren, waardoor veranderingen in de cel niet altijd zichtbaar zijn. Sommige componenten kun je echter 2 uur later al wel in het bloed terugvinden. Wanneer de organellen in het cytoplasma zijn verteerd, ontstaan vacuolen in het cytoplasma. De dode cellen worden vervangen door een dubbele laag fosfolipen, zogenaamde myeline ‘figuren’, welke fagocytose ondergaan of verder afgebroken worden tot vetzuur. Deze vetzuren verkalken uiteindelijk.

    Nucleaire veranderingen treden op 3 manieren op:

    1. Karyolyse duidt op het verliezen van DNA,
    2. Pyknose is het verschrompelen van de kern en de toename van basofielen en
    3. Bij karyorrhexis valt de irreversibel gecondenseerde (pyknotische) kern in fragmenten uiteen.

    De verschillende morfologische patronen van necrose geven aanwijzingen over mogelijke oorzaken.

    Bij coagulatienecrose blijft het dode weefsel dagen of weken onaangetast, doordat niet alleen de structurele eiwitten, maar ook enzymen voor proteolyse zijn aangedaan. Uiteindelijk zorgt fagocytose van de cellulaire restjes voor het opruimen van de cel. Coagulatienecrose ontstaat door ischemie ten gevolge van een obstructie, behalve in het brein. Het gebied waar coagulatieve necrose optreedt, noemen we een infarct.

    Vervloeiende necrose zorgt juist voor een snelle vertering van dode resten, waarbij een vloeibare viscoos mengel (pus) ontstaat, doordat microben (bacteriën, schimmels) de ophoping van leukocyten stimuleren. Gangreen necrose is een combinatie van coagulatieve en liquefactieve necrose, waarbij ischemie voor schade zorgt en de patiënt een bacteriële infectie ter plaatse heeft. Hetgeen zich hierbij vormt noemen we koudvuur of gangreen. Verkazende necrose ontstaat meestal in het centrum van een tuberculose infectie. In het midden bevinden zich afgebroken cellen vormloze granulacellen met daaromheen een grens van inflammatoire cellen. Dit noemen we een granuloom.

    Een pancreatitis kan vetnecrose veroorzaken, doordat lipasen uit de pancreas lekken en de membranen van vetcellen in het peritoneum en de tryglyceride-esters, die erbinnen lagen, afbreken. Deze vetzuren vormen met calcium grote witte gebieden (vet verzeping).

    Fibrine-achtige necrose komt voor bij immunologische reacties met bloedvaten. Wanneer complexen van antigenen of antilichamen in de wand in aanraking komen met fibrine die uit de vaten lekt, vormt zich een heldere vormloze roze stof in de haematoxiline-eosine kleuring, genaamd fibrinoïd.

    Necrotisch weefsel, dat het lichaam niet goed verteert en reabsorbeert, trekt calciumzouten en andere mineralen aan. Dit wordt dystrofische verkalking genoemd.

    Er is een aantal elementen dat in de meeste vormen van celschade voorkomt:

    • De cellulaire reactie hangt af van het soort, de duur en de ernst van de schade.

    • De consequenties hangen af van het type, de staat en de mogelijkheid tot adapteren van de cel.

    • Verschillende biochemische mechanismen die aangrijpen op essentiële cellulaire componenten veroorzaken de celschade.

    • Iedere schadelijke stimulus triggert ook meerdere onderling verbonden mechanismen die andere cellen weer schade aan kunnen brengen.

    ATP wordt voornamelijk geproduceerd via oxidatieve fosforylering van ADP. Een klein deel ontstaat uit anaerobe glycolyse. De meest voorkomende oorzaken voor uitputting van ATP zijn verminderde toevoer van zuurstof en voedingsstoffen, schade aan mitochondriën en het gedrag van giftige stoffen. Weefsels met de minste glycolytische capaciteit lijden het ergst onder zuurstoftekort (het brein).

    Vermindering van de hoeveelheid ATP met 5-10 % heeft de volgende gevolgen:

    • Verminderde activiteit van de natrium-kaliumpomp, waardoor er meer natrium met water de cel in diffundeert, zodat deze opzwelt en het ER dilateert.

    • Veranderd cellulair energiemetabolisme. Ischemie leidt tot een zuurstoftekort, waardoor er minder oxidatieve fosfylering en meer glycolyse gaat plaatsvinden. De glycogeenvoorraad raakt op en er ontstaat meer lactaat, wat de cellulaire pH verlaagt.

    • Calciumpompen falen, wat tot meer Ca²+ influx leidt en beschadiging van cellulaire componenten.

    • Minder eiwitsynthese, doordat de ribosomen zich losmaken van het rER en polysomen splitsen ten gevolge van de langdurige uitputting van ATP.

    • Ontstaan van ongevouwen eiwitten, waardoor de unfolded protein reactie optreedt. Dit kan leiden tot celschade of celdood.

    • Necrose van mitochondriën en lysosomen, doordat de membranen irreversibel beschadigd zijn.

    Mitochondriën leveren energie in de vorm van ATP en spelen een rol in celschade en celdood. Ze raken beschadigd door een toename aan Ca²+ in het cytosol, reactieve zuurstofverbindingen en zuurstoftekort. Twee gevolgen van schade aan mitochondriën zijn:

    • Ontstaan van een mitochondriële permeabiliteitstransitieporie. Door de porie gaat de membraanpotentiaal verloren en daarmee de oxidatieve fosforylatie, wat tot steeds verdere uitputting van ATP leidt en uiteindelijk tot necrose van de cel.

    • Apoptose van de cel, doordat tussen het binnenste en buitenste membraan cytochroom c en eiwitten liggen. Deze activeren de enzymen (caspases), die apoptose induceren. Wanneer deze weglekken in het cytosol, ondergaat de cel apoptose.

    Toename van intracellulair Ca²+ brengt de cel schade toe via de volgende mechanismen:

    1. De mitochondriële permeabiliteitstransitieporie gaat open bij een ophoping van Ca²+ in de mitochondriën, wat ervoor zorgt dat er geen generatie van ATP plaatsvindt.

    2. Calcium activeert een aantal enzymen, waaronder fosfolipase, protease, endonuclease en ATPase, die voor respectievelijk membraan-, eiwit-, DNA- en ATP-schade zorgen.

    3. Het induceren van apoptose door caspases te activeren en de permeabiliteit van de mitochondriën te verhogen

    Vrije radicalen zijn chemische stoffen die een ongepaard elektron bevatten en autokatalytische reacties in gang zetten wanneer ze met zichzelf reageren. Zo ontstaat een keten aan schade. Mitochondriën maken tijdens het opwekken van energie reactieve zuurstofradicalen (ROS), die beschermingsmechanismen weer afbreken en verwijderen. Tevens maken leukocyten, met name neutrofielen en macrofagen, ook ROS aan. Wanneer de concentratie van deze ROS stijgt, ontstaat oxidatieve stress. Dit is een proces dat voorkomt bij celschade, kanker, veroudering en degeneratieve ziekten. Vrije radicalen worden op verschillende manieren gegenereerd:

    • Tijdens de normale omzetting van zuurstof naar water worden tussenproducten geproduceerd, die ongepaarde elektronen bevatten, doordat er telkens een verschillend aantal elektronen van zuurstof wordt afgehaald.

    • Absorptie van stralingsenergie.

    • Ontsteking. Oxidases maken soms ook ROS.

    • Het enzymatische metabolisme van exogene chemicaliën of medicijnen kan ook vrije radicalen genereren. Dit zijn geen ROS, maar ze werken wel hetzelfde.

    • Overgangsmetalen (zoals koper en ijzer) kunnen elektronen afstaan of opnemen. Bij deze reactie katalyseren ze de vorming van vrije radicalen.

    • NO (stikstofoxide) kan zelf ook als een vrij radicaal functioneren

    Deze vrije radicalen van stikstofoxide, zijn niet stabiel en reageren met water spontaan tot zuurstof en waterstofdioxide. Verder heeft het lichaam een aantal (niet-)/enzymatische mechanismen om ze te verwijderen:

    • Antioxidanten voorkomen vorming of maken ze inactief.

    • Reactieve ionen (ijzer en koper) zijn maar in lage concentraties in het bloed aanwezig, doordat ze aan transport- en opslageiwitten gekoppeld worden, wat de vorming van ROS vermindert.

    • Een aantal enzymen verwijderen radicalen door superoxide (zuurstof met een vrij elektron) en waterstofdioxide af te breken. Hiertoe behoren:

    • Catalase (in peroxisoom): 2 waterstofdioxide wordt zuurstof + 2 water

    • Superoxide-dismutasen (SODs) in de mitochondriën en het cytosol: 2superoxide + 2H wordt 2waterstofdioxide + zuurstof

    • Glutathion peroxidase katalyseert de afbraak van vrije radicalen ook. Daarbij zegt de ratio GSH (voorproduct)/GSSG iets over de capaciteit van de cel om ROS onschadelijk te maken.

    Vrije radicalen kunnen tot onder andere 3 relevante pathologische reacties leiden:

    1. Peroxidatie van membraanvetten. Dit gebeurt wanneer vrije radicalen afkomstig van zuurstof in aanraking komen met onverzadigde vetzuren. Deze peroxiden zijn onstabiel en leiden zo tot een keten aan reacties, propagatie genaamd.

    2. Oxidatieve verandering van eiwitten. Vrije radicalen stimuleren de oxidatie van zijketens van aminozuren, waardoor de conformatie verandert, actieve bindingsplaatsen verloren gaan en de afbraak van misvormde eiwitten in de proteasomen verhoogd wordt.

    3. Schade aan het DNA.

    Het membraan, en daarmee de permeabiliteit, raakt op verschillende manieren beschadigd:

    1. ROS

    2. Verminderde synthese van fosfolipiden: gevolg van een defect aan het mitochondrium of door hypoxemie, wat beiden leidt tot een verminderde productie van ATP.

    3. Versterkte afbraak van fosfolipiden: celschade leidt tot een verhoogde calciumconcentratie, wat leidt tot het vrijkomen van fosfolipasen.

    4. Abnormaliteiten in het cytoskelet: De verhoogde Ca²+ concentratie activeert ook proteasen, die het cytoskelet aantasten, waardoor het celmembraan van het cytoskelet loslaat.

    Mitochondriële membraanschade leidt tot verminderde ATP-productie en afgifte van eiwitten die apoptose op gang brengen. Schade aan het plasmamembraan verstoort de osmotische balans en leidt tot het verlies van cellulaire inhoud. Bij schade aan de lysosomale membranen lekken enzymen naar buiten, die complete vertering katalyseren, waardoor de cel door necrose afsterft. Oxidatieve stress en vrije radicalen veroorzaken dermate ernstige schade aan DNA en eiwitten, dat deze irreversibel is, ondanks de aanwezige herstelmechanismen.

    Ischemie veroorzaakt sneller en ernstigere schade dan hypoxemie, omdat hierbij niet alleen de aerobe, maar ook de anaerobe glycolyse verstoord is. Dit laatste komt door uitputting van de glycogeenvoorraad en de verminderde afvoer van metabolieten. Als een staat van ischemie aanhoudt, ondervindt de cel irreversibele schade en necrose.

    Het herstellen van de perfusie in ischemisch weefsel kan tot extra schade leiden, doordat nieuwe schadelijke processen gaan werken. Reoxigenatie verhoogt namelijk de vorming van reactieve zuur- en stikstoffen. Daarnaast veroorzaakt de verhoogde productie van cytokines en expressie van hechtingsmoleculen ontstekingen en hebben IgM antilichamen de neiging om in ischemisch weefsel te gaan zitten. Hier binden ze aan eiwitten en zorgt de activatie voor nog meer schade en ontstekingen.

    Chemicaliën veroorzaken schade via twee mechanismen:

    • Direct, door te binden aan belangrijke moleculaire componenten; Alleen de cellen die deze stoffen gebruiken, absorberen of uitscheiden lijden hieronder

    • Indirect, doordat ze pas in het ER van de lever omgezet worden in reactieve giftige metabolieten; Deze schade ontstaat voornamelijk door de formatie van vrije radicalen.

    Apoptose

    Apoptose is een gereguleerd zelfmoordmechanisme, wat ervoor zorgt dat de cel in stukjes wordt afgebroken en afsterft, voordat er iets uit kan lekken. Hierdoor ontstaan geen ontstekingsreactie. Dit proces is erop gericht cellen om onnodige cellen te verwijderen. Het is belangrijk bij de volgende fysiologische processen: vernietiging van cellen tijdens embryogenese, herstellen van hormoon-afhankelijk weefsel, verlies van cellen bij prolifererend weefsel om het aantal gelijk te houden, eliminatie van schadelijke zelf-reactieve lymfocyten en doden van gastcellen die hun werk gedaan hebben (neutrofielen/lymfocyten). Apoptose doodt alleen cellen die irreversibel (pathologisch) beschadigd zijn. Dit gebeurt bij DNA-schade, ophoping van niet goed gevormde eiwitten, celdood door bepaalde infecties en pathologische atrofie van weefsel na een obstructie.

    Zichtbare kenmerken van apoptose zijn: het krimpen van de cel, condensatie van chromatine, blaasjes in het cytoplasma die apoptotische lichaampjes vormen, en fagocytose door macrofagen. Er zijn een aantal biochemische veranderingen die hiervoor zorgen. Zo wijst de aanwezigheid van actieve caspases op apoptose in een cel. Tevens vindt de afbraak van eiwitten en DNA op een specifieke manier plaats, wat niet het geval is bij necrose. Specifieke membraanveranderingen zorgen ervoor dat fagocyten de dode cellen kunnen herkennen.

    Te veel of te weinig apoptose kan de oorzaak zijn van bijvoorbeeld degeneratieve ziekten en kanker. Apoptose heeft twee fases: de initiatiefase en de uitvoerende fase. De initiatiefase komt op gang door signalen van twee verschillende pathways:

    • De intrinsieke (mitochondriële) pathway is het belangrijkste mechanisme en bevat Bcl-sensoren, -effectoren en -regulatoren, die het lekken van apoptose stimulerende moleculen (cytochroom c) veroorzaken. Deze binden vervolgens met initiatie-cascasen, die uitvoerende caspasen activeren.

    • De extrinsieke pathway treedt in werking wanneer een ‘dood’-receptor op het plasmamembraan een verbinding met een cel aangaat. De receptoren vallen onder de TNF-familie en bevatten een ‘dood-domein’. Na binding van het ligand aan de receptor, gaan meerdere receptoren bij elkaar liggen waardoor de domeinen een verbinding met elkaar aangaan om een hechtingsplaats te vormen voor adaptoreiwitten. Het adaptoreiwit bindt uiteindelijk aan caspasen die de apoptose uitvoeren.

    Wanneer een initiatie-caspase zicht splitst en zijn actieve vorm krijgt, zet hij de uitvoerende caspasen in werking, die op hun beurt weer DNAses activeren. Dit is de uitvoerende fase. De apoptotische cel splitst zich in kleine delen en ondergaat membraanveranderingen waardoor fagocytose gestimuleerd wordt. Macrofagen produceren zelf deeltjes die aan apoptotische cellen binden. Het proces duurt slechts enkele minuten en laat geen sporen achter, dus geen inflammatie.

    Als er teveel of te weinig apoptose plaatsvindt, kunnen er ziekten ontstaan. Te weinig apoptose zorgt ervoor dat abnormale cellen, zoals cellen met DNA-mutaties, overleven. Dit kan kanker veroorzaken. Daarnaast overleven ook cellen die lichaamseigen cellen aanvallen. In dat geval is er sprake van een auto-immuunziekte. Een teveel aan apoptose leidt tot een verlies aan cellen, wat neurodegeneratieve ziekten en ischemische schade veroorzaakt.

    Autofagie is een proces dat optreedt ten tijde van voedselschaarste, waarbij een stervende cel zichzelf opeet om te overleven. Hierbij worden intracellulaire organellen en het cytosol in kleine stukjes verdeeld en vervolgens van het cytoplasma gescheiden in een autofagische vacuole, die later met een lysosoom tot een autofagolysosoom fuseert. Lysosomale enzymen kunnen dan de cellulaire componenten verwerken.

    Abnormale intracellulaire ophopingen van een bepaalde stof kunnen ook schade toebrengen aan een cel. Deze kunnen endogeen of exogeen en tijdelijk of permanent zijn. Het cytoplasma en de celkern kunnen bestandsdeeltjes opslaan. De meeste abnormale vormen van ophoping zijn onder te verdelen in 4 types:

    • De productie van een normaal endogeen bestandsdeel is gelijk of verhoogd, maar het kan niet snel genoeg verwijderd worden door een vertraagd metabolisme.

    • Een gemuteerd gen zorgt voor de vorming van een abnormale endogene stof, die zich niet goed kan vouwen en de cel niet kan afvoeren

    • Een enzymdefect, meestal erfelijk, zorgt ervoor dat een normaal bestandsdeel niet goed afgebroken kan worden

    • Een abnormale exogene stof treedt binnen, die door de cel niet afgebroken of getransporteerd kan worden

    Steatose (vetverandering) duidt op een abnormale ophoping van triglyceriden en komt vaak voor in de lever en in het hart. Belangrijke oorzaken zijn alcoholmisbruik, diabetes mellitus en obesitas. De lever breekt normaal vrije vetzuren af tot cholesterolesters, fosfolipiden of ketonlichaampjes. Bij een defect ontstaan uit een teveel aan vetzuren triglyceriden. Apo-eiwitten kunnen deze weer omzetten in lipide-eiwitten, die buiten de lever opslagen kunnen worden als vet.

    Cellen gebruiken cholesterol voor de synthese van het celmembraan. Alleen pathologische processen zorgen ervoor dat de cel cholesterol of cholesterolesters intracellulair opslaat. Dit gebeurt bij atherosclerose (vetvacuolen in de intimalaag van bloedvaten), xanthomen (in bindweefsel in huid/pezen), cholesterolose (lamina propia van de galblaas) en de ziekte van Niemann-Pick type C (mutatie, meerdere organen). Een overmaat aan opslag van eiwitten in de cel kan een gevolg zijn van:

    1. Teveel reabsorptie in de renale buis; dit is een compensatoir mechanisme van het lichaam, wanneer er sprake is van teveel eiwitten in de urine.

    2. Een normaal eiwit moet in grote hoeveelheden geproduceerd worden. Voorbeeld: plasmacellen produceren grote hoeveelheden antilichamen. De uitgezetten ER zijn te zien als lichaampjes van Russel.

    3. Een defect in het intracellulaire transport en daarmee de secretie van belangrijke eiwitten.

    4. Ophoping van eiwitten van het cytoskelet; dit ontstaat als gevolg van schade aan de cel of bepaalde ziekten, zoals de ziekte van Alzheimer.

    5. Aggregatie van abnormale eiwitten.

    Hyaline is de naam voor een histologisch fenomeen, waarbij een homogene, eosinofiele (roze) substantie te zien is in weefsel. Komt binnen en buiten de cel voor. Een overmaat aan glycogeen komt voor bij patiënten met een defect in hun glucose of glycogeen metabolisme, wat resulteert in een intracellulaire overmaat, zichtbaar als heldere vacuoles in het cytoplasma.

    Pigmenten kunnen exogeen of endogeen zijn. Voorbeelden van exogene pigmenten zijn koolstof en tatoeages. Wanneer je koolstof inademt, nemen macrofagen dit op via je longweefsel en brengen het via lymfatische kanalen naar de lymfeknopen. Deze worden zwart als je teveel koolstof inademt. Daarnaast bestaat een aantal endogene pigmenten. Lipofuscine is een bruine pigmentkorrel, die de aanwezigheid van regressieve veranderingen in weefsel markeert. Melanine is bruinzwart van kleur. Het goudgeel-kleurige hemosiderine, afkomstig van hemoglobuline, geeft een overmaat in opgeslagen ijzer aan. Wanneer het ijzer van het heem wordt afgehaald, ontstaat biliverdine (groen).

    Er zijn twee vormen van pathologische verkalking:

    1. Bij dystrofische verkalking vindt de afzetting van calcium plaats in necrotische gebieden. Schade aan het membraan zou ervoor zorgen dat calcium in membraan gebonden vesikels wordt geconcentreerd. Allereerst bindt calcium aan fosfolipiden en binden osfatasen die een fosfaatgroep vormen aan het calcium. Dit herhaalt zich een aantal keer, waarna het geheel structureel verandert tot een microkristal, die zorgt voor nog meer afzetting van calcium. Metastatische verkalking is het afzetten van calcium in normaal weefsel, wanneer er sprake is van een hypercalciëmie. Dit is het gevolg van (1) een toegenomen secretie van het parathyroïd hormoon (PTH), (2) vernietiging van weefsel in het beenmerg, (3) vitamine D gerelateerde aandoeningen of (4) nierfalen. Het kan overal in het lichaam optreden, maar dit komt het meest voor in tussenliggend weefsel van de maag, nieren, longen en bloedvaten, waar excretie van zuur plaatsvindt. Cellulaire veroudering is een progressieve vermindering in functie en leefbaarheid door genetische abnormaliteiten en ophopingen van cellulaire en moleculaire schade.

    Veranderingen, die een bijdrage leveren in de veroudering van cellen, zijn:

    • Verminderde cellulaire replicatie; cellen bereiken een staat, waarna ze zich niet meer kunnen delen (veroudering). Dit komt mogelijk doordat het DNA na iedere deling iets korter wordt. Cellen van kinderen delen vaker dan cellen van volwassenen.

    • Ophoping van metabolische en genetische veranderingen; Oxidatieve schade, veroorzaakt door vrije radicalen, neemt toe met de leeftijd van de cel.

    • Tot slot kunnen ook de organellen verouderen wat de cel vermindert in functie.

    Signaaltransductiewegen

    De mechanismen, die de vernieuwingsprocessen van de cel controleren kunnen fout gaan, waardoor de structuur van weefsel wordt aangetast. Kanker ontstaat door afwijkingen in het normale cel gedrag. Door een genetische verandering kan de cel ongecontroleerd delen en in leven blijven, terwijl dit eigenlijk niet moet. Ondertussen ontstaan er veel dochtercellen met dezelfde genetische verandering. Er ontstaat een uitbreidend gezwel van delende cellen, die het weefsel verstoort.

    Kankercellen hebben twee karakteristiekeerfelijke eigenschappen:

    1. Zij en hun nakomelingen delen zich ongecontroleerd;

    2. Ze migreren naar andere weefsels en vormen daar nieuwe tumoren.

    Het is de combinatie van deze eigenschappen die uiteindelijk letaal kan zijn. Als een cel alleen de eerste eigenschap heeft, ontstaat een gezwel door ongeremde deling. Dit gezwel blijft echter op een bepaalde plek. in het weefsel Het wordt daarom een goedaardige tumor genoemd, ofwel benigne. Goedaardige tumoren kunnen vaak met een chirurgische ingreep worden verwijderd.

    Een tumor veroorzaakt alleen kanker als zowel eigenschap 1 als 2 aanwezig is. Dan kunnen dekankercellen zich uit zaaien naar andere weefsels. Cellen van kwaadaardige (maligne) tumoren breken los van de primaire tumor en verplaatsten zich via bloed- of lymfevaten naar andere delen van het lichaam. Hier vormen zij secundaire tumoren, ofwel metastasen. Hoe verder de kanker is uitgezaaid, hoe moeilijker het te behandelen is.

    Er zijn veel factoren van invloed op het ontstaan van kanker. Veel van de factoren die kanker kunnen veroorzaken, komen uit de omgeving. De belangrijkste invloedfactor is het roken van tabak, wat niet alleen longkanker veroorzaakt maar ook de kans verhoogt op vele andere soorten kanker.

    Kanker is hoofdzakelijk een genetische ziekte: het ontstaat als gevolg van pathologische veranderingen in de informatie, die gedragen wordt door het DNA. Het verschil met andere genetische ziektes is dat mutaties die kanker tot gevolg hebben vaak somatische mutaties zijn. Dat wil zeggen dat het mutaties zijn die ontstaan in individuele cellen van het volwassen lichaam. Kanker wordt meestal veroorzaakt door mutagenen: stoffen of straling die mutaties veroorzaken. Er isMaar ook zonder mutagenen kan kanker ontstaan, omdat mutaties ook spontaan voorkomen door fouten tijdens DNA replicatie en repair. Er ismeer dan een enkele mutatie nodig om een normale cel in een kankercel te veranderen. Verschillende mutaties stapelen zich vaak geleidelijk op.Daarom komt kanker voornamelijk voor bij oudere mensen.

    Menselijke kankercellen

    Veel menselijke kankercellen zijn genetisch instabiel, doordat bepaalde mutaties ertoe leiden dat DNA replicatie en repair niet goed verloopt. Er kunnen bijvoorbeeld fouten optreden in de replicatie-, repair-, controle- en checkpointprocessen van de celcyclus. Hierdoor ontstaan er sneller, steeds meer mutaties.

    De mutaties die leiden tot kanker geven cellen een competitief voordeel boven andere cellen. Hierdoor kunnen cellen zich goed delen en verspreiden binnen een weefsel. Dit voordeel wordt veroorzaakt door verschillende eigenschappen van kankercellen:

    1. Verminderde afhankelijkheid van signalen van andere cellen voor groei, overleving en deling. Vaak komt dit door mutaties in delen van de signaleringswegen. Een mutatie in het Ras gen zorgt bijvoorbeeld voor een permanent signaal voor celdeling, die normaal van buitenaf zou moeten komen.

    2. Verminderde gevoeligheid voor apoptose. Door mutaties in genen die het intracellulaire dodingprogramma reguleren. Hierdoor kunnen de beschadigde cellen niet geprogrammeerd worden gedood. Het p53 gen is een deel van het checkpoint mechanisme dat het DNA op beschadigingen controleert. Normaal gesproken zorgt het ervoor dat een cel stopt met delen of dood gaat wanneer het DNA beschadigd blijkt. Wanneer p53 defect is, blijft de cel met beschadigd DNA delen en overleven.

    3. Ongecontroleerde en eindeloze celdeling. De meeste cellen kunnen slechts een bepaald aantal keer delen voordat ze onwerkzaam worden, doordat telomeren te kort worden. Het enzym telomerase kan door mutaties de productie van telomeren stimuleren, waardoor de celdeling geen limiet heeft.

    4. Genetische instabiliteit.

    5. Abnormaal invasief, vaak door een gebrek aan moleculen die de cellen aan elkaar binden.

    6. Deling en overleving in andere lichaamsweefsels. Normaal overleven cellen niet in vreemde weefsels, maar door mutaties kunnen ze zich daar ontwikkelen tot metastasen.

    Bepaalde mutaties maken een bepaald eiwit hyperactief. Deze mutaties hebben een dominant effect: één gen moet gemuteerd zijn om problemen te veroorzaken. Het gemuteerde gen wordt dan oncogeen genoemd. De correspondeerde normale gen wordt proto-oncogeen genoemd. Mutaties kunnen proto-oncogenen veranderen in oncogenen.

    Andere mutaties vernietigen de functie van het gen (een bepaald product kan niet worden gevormd. Hiervoor moeten wel beide allelen van het gen geïnactiveerd/aangetast zijn om effecten waar te nemen. Deze genen worden tumor suppressor genen genoemd..

    Oncogenen en suppressor genen kunnen in vele verschillende soorten voorkomen afhankelijk van het gen dat aangetast is. Deze mutaties kunnen betrekking hebben op groeifactoren, receptoren, intracellulaire signaleringsstoffen, DNA-repair eiwitten, DNA schade controleurs (p53), regulatoren van de celcyclus of apoptose.

    Hoe beter we kanker begrijpen, hoe beter we het kunnen behandelen. De behandeling van kanker is echter erg moeilijk, omdat kankercellen veranderlijk zijn door mutaties. Hierdoor kunnen zij snel resistentie ontwikkelen tegen bepaalde behandelingen. Daarnaast is elke soort kanker anders, omdat de mutaties random plaatsvinden. Dus één behandeling zal nooit alle kankergevallen kunnen behandelen. Als laatste wordt een kankergezwel vaak pas ontdekt wanneer het al een diameter van 1 cm heeft en zich al heeft uitgezaaid.

    Tot nu toe is het wegsnijden van het gezwel de meest effectieve behandeling. De kanker moet dan niet uitgezaaid zijn. Een andere manier om tumorcellen te doden is radio- of chemotherapie. Hierdoor wordt DNA van vooral tumorcellen beschadigd. Met mogelijke nieuwe behandelingen hopen we meer effectieve behandeling voor kanker te verkrijgen.

    Pathologie: Wat houdt neoplasie in? - Chapter 7

    Pathologie: Wat houdt neoplasie in? - Chapter 7

    Inleiding

    Neoplasie betekent nieuwe groei. Tegenwoordig noemen we dit ook wel een tumor: abnormale en ongecontroleerde groei van het weefsel. Door genetische veranderingen blijven kankercellen delen en worden zij onafhankelijk van externe stimuli. Toch blijven tumoren afhankelijk van voeding en bloedtoevoer. Oncologie is de studie van tumoren en gezwellen. Een tumor is goedaardig wanneer deze zich niet verspreidt. Deze tumoren kunnen vaak chirurgisch verwijderd worden. Kwaadaardige tumoren worden gezamenlijk aangeduid als kanker. Deze tumoren kunnen zich verspreiden en daardoor andere weefsels aantasten. Wanneer kwaadaardige tumoren vroegtijdig ontdekt worden, kunnen zij vaak goed worden behandeld.

    Met differentiatie wordt hier bedoeld in welke mate neoplastische parenchymcellen lijken op de overeenkomstige normale parenchymcellen. Goedaardige tumoren bestaan uit goed gedifferentieerde cellen, waardoor deze moeilijk te herkennen is al een tumor. Alleen de groei van deze cellen is karakteristiek voor neoplastische aard. Mitose verloopt normaal, maar komt erg weinig voor. Kwaadaardige tumoren worden gekarakteriseerd door vele verschillende gedifferentieerde neoplastische parenchym cellen: zowel sterk gedifferentieerd als helemaal niet gedifferentieerd. Goed gedifferentieerde kankercellen lijken normaal, waardoor ze niet goed herkend kunnen worden. Niet goed gedifferentieerde kankercellen noemen we anaplastisch. Het gebrek aan differentiatie gaat vaak samen met andere morfologische veranderingen: Pleomorfisme: De cellen van hetzelfde gezwel zijn niet gelijk in grootte en vorm.

    • Abnormale nucleaire morfologie: De kern bevat soms meer chromatine. Daarnaast is de kern vaak vergroot en onregelmatig gevormd. De chromatine zijn geklonterd langs en membraan en er zijn grote nuclei aanwezig.

    • Mitose: in tegenstelling tot goed gedifferentieerde tumorcellen komen er in ongedifferentieerde tumorcellen veel mitosen voor. Hierdoor is de proliferatie activiteit verhoogd. De mitose van kankercellen wordt vaak gekarakteriseerd door bizarre mitose figuren.

    • Verlies van polariteit: de oriëntatie van anaplastische cellen is aanzienlijk verstoord. Ze groeien in een ongeorganiseerde structuur.

    Metaplasie is het vervangen van een bepaald type cel door een ander type cel. Deze aanpassing gaat bijna altijd samen met weefselbeschadiging, reparatie en regeneratie. Het vervangende celtype is vaak meer geschrikt voor de veranderde omgeving.

    Dysplasie betekent letterlijk ongeordende groei. Dit leidt tot verlies van uniformiteit van de afzonderlijke cellen in het weefsel. Dysplastische cellen vertonen veel pleomorfisme en vergrootte hyperchromatische kernen. Er komen meer, maar wel normale mitosefiguren voor. Dysplasie komt vaak voor in metaplastische epithelia.

    Hoe meer een tumorcel gedifferentieerd is, hoe beter het weefsel zijn functie kan behouden. Zeer anaplastische cellen verliezen hun gelijkenis met de normale weefselcellen. Vaak daalt hierdoor de functionele activiteit van het weefsel.

    De moleculaire basis van kanker

    Carcigonese wordt veroorzaakt door op zichzelf niet dodelijke genetische schade. Dergelijke mutaties worden verkregen door milieu invloeden, zoals chemicaliën, straling en virussen. Mutaties kunnen echter ook spontaan ontstaan. Een tumor wordt gevormd door de uitbreiding van een precursor cel met genetische schade.

    Normaal gesproken wordt de celgroei/deling gereguleerd door vier klassen regulerende genen. Deze genen zijn de voornaamste eiwitten die bij genetische schade lijden tot kanker:

    • Groeibevorderende proto-oncogenen
      mutaties van proto-oncogenen zijn dominant, omdat één gemuteerd allel leidt tot transformatie ondanks de aanwezigheid van een normaal allel.

    • Groei remmende tumor suppressor genen
      mutaties van tumor suppressor genen zijn recessief. Beide allelen moeten gemuteerd zijn om tot transformatie te leiden. Er zijn echter uitzonderingen: bij mutatie van één allel wordt soms de activiteit van de betrokken eiwitten verminderd. Hierdoor wordt cel proliferatie en overleving minder geremd. Verlies van gen-functie door beschadiging van een enkel allel noemen we haploinsufficiëntie. Hieruit blijkt dat er soms twee intacte allelen nodig zijn voor goede gen-functie.

    • Genen voor geprogrammeerde celdood (apoptose)
      Deze genen kunnen zich gedragen als proto-oncogenen of als tumor suppressor genen.

    • Regulerende genen voor DNA-herstel
      mutaties in DNA-repair genen leiden niet direct tot transformatie van cellen. Door deze mutaties neemt het vermogen om schade aan het DNA te repareren af. Hierdoor kunnen er wijdverbreide mutaties ontstaan en dus ook neoplastische mutaties.

    Carcinogenese is een complex proces als gevolg van meerdere mutaties. Kwaadaardige tumoren worden gekenmerkt door: overmatige groei, het lokale invasieve karakter en het vermogen om metastase te vormen. In bepaalde perioden kunnen tumoren agressiever zijn. Dit verschijnsel wordt aangeduid as tumorprogressie. Verhoging van de kwaadaardigheid wordt veroorzaakt door meerdere mutaties die onafhankelijk accumuleren in verschillende cellen. Hierdoor ontstaan subklonen die verschillend groeien, uitzaaien en op therapie reageren. Tijdens deze progressie worden tumorcellen blood gesteld aan immune en non-immune selectiedruk. Sterk antigene cellen worden bijvoorbeeld vernietigd door het afweersysteem. Hierdoor blijven cellen in de groeiende tumor over die bedreven zijn in overleving, groei, invasie en metastase.

    In de afgelopen jaren zijn veel kankergeassocieerde genen ontdekt. Deze hebben een specifieke functie die bij ontregeling bijdragen aan het ontstaan van maligniteit. De zeven belangrijkste veranderingen in een tumorcel zijn:

    • Zelfvoorziening in de groeisignalen: tumorcellen kunnen groeien zonder externe stimuli, meestal door oncogen activatie.

    • Ongevoeligheid voor groei-remmende signalen: tumorcellen reageren niet op moleculen die een remmende werking hebben op de proliferatie (zoals groeifactor β, en remmers van cycline-afhankelijke kinasen)

    • ontwijking van apoptose: tumoren kunnen resistent zijn tegen geprogrammeerde celdood als gevolg van inactivering van p53 of activering van anti-apoptose genen.

    • Onbeperkte replicatie potentieel: tumoren kunnen onbeperkt prolifereren en vermijden cellulaire veroudering.

    • Steunen van angiogenese: tumorcellen kunnen ook niet groeien zonder vorming van vasculaire toevoer, zodat voedingstoffen en zuurstof kunnen worden geleverd en afvalstoffen kunnen worden afgevoerd.

    • Vermogen om binnen te dringen en te metastaseren: kankercellen kunnen zich uitzaaien naar andere weefsels.

    • Defecten in DNA-repair: tumoren kunnen DNA schade veroorzaakt door carcinogenen niet herstellen. Hierdoor ontstaat instabiliteit van genen. Doordat mutaties blijven voorkomen, ontwikkelen verschillende soorten cellen. Sommige varianten worden meer bedreven in het ontwijken van het afweersysteem en zijn daardoor agressiever.

    Bovenstaande veranderingen worden gezien in kanker, maar de precieze pathways die aanleiding geven tot deze kenmerken verschillen. De mate van aanwezigheid van mutaties in kankergenen worden bepaald door de werkzaamheid van DNA-reparatie mechanisme en beschermeden mechanisme zoals apoptose. Ook senescentie (veroudering) blijkt een belangrijke barrière te zijn voor oncogenen proliferatie. Er zijn ook fysieke grenzen voor tumoren. Voedingstoffen en zuurstof moeten worden toegevoerd en afvalstoffen afgevoerd (angiogenese). Verder worden epithelia gescheiden van andere weefsels door een basaal membraan. Als de kanker wil uitzaaien moet deze extracellulaire matrix worden afgebroken.

    Oncogenen

    Oncogenen zijn genen die de autonome celgroei in kankercellen stimuleren. Hun nog ongemuteerde tegenhangers worden proto-oncogenen genoemd. Door mutaties in proto-oncogenen ontstaan oncogenen, waardoor de celgroei wordt gestimuleerd. De eiwitproducten van oncogenen zijn niet afhankelijk van externe groeisignalen. Hierdoor wordt de celgroei autonoom.

    Onder normale omstandigheden verloopt de cel proliferatie als volgt:

    1. De binding van een groeifactor aan een specifieke receptor.

    2. Tijdelijke activatie van de receptor, die signaaleiwitten activeren in de cel.

    3. Overdracht van het signaal richting de kern door een cascade van signaalmoleculen.

    4. Activering van de transcriptie-regulatoren en synthese van celcyclus-eiwitten.

    5. Voortgang van de celcyclus, resulterend in celdeling.

    Proto-oncogenen reguleren cellulaire functies met betrekking tot groei en proliferatie. De eiwitten functioneren als: groeifactoren, groei-receptoren, signaaltransducers, transcriptie factoren of celcyclus-eiwitten. Mutaties zetten proto-oncogenen om in permanent actieve oncogenen.

    Normale cellen hebben externe groeisignalen nodig om proliferatie te ondergaan. Deze groeisignalen worden door een bepaalde cel uitgescheiden on naburige cellen te stimuleren. Sommige kankercellen kunnen echter door een mutatie zelf de groeifactor waar zij op reageren, produceren (autocriene lus).
    Vaker worden eiwitten die betrokken zijn bij de signaaloverdracht gemuteerd (zoals RAS). Hierdoor ontstaat over-expressie van groeifactorgenen in de cel. Veel oncogenen zijn groeifactorreceptoren. Meestal zijn dit transmembraaneiwitten die extracellulair aan een groeifactor kunnen binden en intracellulair een tyrosinekinase domein hebben. Normaal gesproken wordt het kinase tijdelijk geactiveerd en activeert deze door fosforylering verschillende signaalsubstraten. De gemuteerde receptoren leveren continu signalen, zelfs zonder aanwezigheid van een groeifactor. Groeifactor-receptoren kunnen in een tumor constant geactiveerd worden door verschillende mechanismen, zoals mutaties, overexpressie en gen-herschikking.

    Cytoplasmatische Signaaleiwitten

    Signaaleiwitten in de cel nemen signalen van receptoren over en brengen deze over naar de celkern. Een belangrijk signaaleiwit is de RAS familie van guanine-trifosfaat G-eiwitten. Een puntmutatie in het RAS gen is de meest voorkomende afwijking in tumoren. RAS wordt geactiveerd door binding van een groeifactor aan een receptor in het plasmamembraan. Hierdoor wordt GDP (inactief) vervangen door GTP (actief). Normaal gesproken kunnen de RAS-eiwitten vervolgens weer overschakelen naar een inactieve stand door fosforylering van GTP. Geactiveerd RAS stimuleert een cascade van proliferatie regulatoren.

    De cyclus van het RAS eiwit is dus afhankelijk van twee reacties:

    • vervanging van GDP door GTP: RAS wordt actief

    • omzetting van GTP in GDP door hydrolyse: RAS wordt inactief

    Deze twee processen worden gereguleerd door andere eiwitten. Het vervangen van GDP door GTP gebeurt door Guanine nucleotide-releasing eiwitten (GAP). GTPase stimuleert de omzetting van RAS naar inactieve vorm. Puntmutaties verminderen de GTPase activiteit van RAS. Een gemuteerd RAS eiwit blijft hierdoor actief, omdat GTP niet omgezet kan worden in GDP.

    Non-receptoren tyrosinekinasen

    Mutaties die oncogenen activiteit veroorzaken, komen ook voor in non-receptoren tyrosinekinasen. Deze tyrosinekinasen reguleren normaal gesproken de pathways die celgroei reguleren. Bepaalde mutaties, chromosomale translocaties en gen-herschikkingen maken deze tyrosinekinasen constant actief. Hierdoor krijgt de cel een verhoogde kinase activiteit. Daarnaast kunnen er mutaties optreden in domeinen, die normaal gesproken de activiteit in bedwang houden. Ook hierdoor ontstaat een verhoogde activiteit van het kinase.

    Transcriptie factoren

    Veel van bovengenoemde pathways resulteren uiteindelijk in het activeren van transcriptiefactoren, die de transcriptie van bepaalde groeibevorderende genen reguleren. Transcriptie factoren bevatten een specifieke aminozuursequentie, waardoor zij in staat zijn om met genen in het DNA te binden. Tumoren kunnen ontstaan ten gevolge ven mutaties in deze transcriptiefactoren.

    Cycline afhankelijke kinase

    Door groeibevorderende stimuli worden cellen uiteindelijk opgenomen in de celcyclus. Tumoren kunnen autonoom groeien als celcyclus-reguleerden eiwitten ook gemuteerd zijn. De fase overgangen in de celcyclus worden gereguleerd door cycline afhankelijke kinase (CDKs). De CDK-cycline complexen activeren eiwitten die cruciaal zijn voor een bepaalde fase. Vervolgens neemt de concentratie cycline weer snel af. Door mutaties in cycline en CDKs wordt de cel proliferatie bevorderd.

    Cycline activeren CDKs, terwijl hun inhibitoren (CDKIs) de CDKs inactiveren. De familie van CDKIs bestaat uit drie eiwitten: p21, p27 en p57. Deze remmen CDKs. De INK$ familie bestaat uit p15, p16, p18 en p19. Deze hebben effect op cycline. Expressie van deze remmers, beïnvloed de voortgang van de celcyclus. Mutatie van deze genen kan ertoe leiden dat de celcyclus niet meer geremd kan worden.

    Twee belangrijk checkpoints in de celcyclus zijn: de G1/S overgang en de G2/M overgang. Bij de G1/S overgang wordt gecontroleerd of er geen DNA-beschadigingen aanwezig zijn. Als er schade aanwezig is, wordt de celcyclus vertraagd, zodat de schade gerepareerd kan worden. Als de schade niet herstelt kan worden, wordt de cel aangezet tot apoptose. Door deze checkpoint wordt voorkomen dat beschadigd DNA wordt gerepliceerd. Het G1/S checkpoint wordt gereguleerd door p53 die de celcyclus inhibitor p21 synthetiseert. De G2/M overgang controleert de voltooiing van DNA-replicatie.

    Defecten in celcyclus componenten zijn belangrijke oorzaken van genetische instabiliteit van kankercellen.

    Tumor suppressor genen

    Het falen van groeiremmers is één van de basis veranderingen in het proces van carcinogenese. Enerzijds drijven oncogenen de proliferatie van cellen aan, anderzijds remmen tumor suppressor genen dit proces. Deze tumor suppressoren, zoals p53 en RB, herkennen genotoxische stres en remmen vervolgens de proliferatie. Uiteindelijk kunnen deze pathways de cel aanzetten tot apoptose. Wanneer suppressor genen worden gemuteerd, kan dit leiden tot het ontstaan van kanker.

    Afwijkingen in het RB-eiwit ontstaan wanneer beide allelen zijn aangetast. Normaal gesproken activeert het RB-eiwit een nucleaire fosfor-eiwit, dat belangrijk is voor de regulatie van de celcyclus. RB is van belang voor de G1/S checkpoint. In rustende cellen in RB actief door hyperfosforylering (veel fosfaat). Het kan binden aan E2F-transcriptiefactoren. Dit complex met histonen bindt aan de promotor, waardoor transcriptie niet kan plaatsvinden. Hierdoor wordt proliferatie geremd. RB wordt inactief door hypofosforylering (weinig fosfaat gekoppeld) na activering van CDKs. E2F komt hierdoor vrij en bindt aan het DNA. Hierdoor wordt transcriptie geactiveerd en wordt de proliferatie niet langer geremd. Door mutaties in RB kunnen E2F-transcriptiefactoren altijd binden aan het DNA en wordt de transcriptie niet meer geremd.

    Het p53 gen is het meest voorkomende doeleiwit van mutaties in tumoren. Beide allelen moeten gemuteerd raken om tot een kwaadaardige tumor te kunnen leiden. P53 werkt als een controle eiwit die verspreiding van genetische schade voorkomt. Het is een transcriptiefactor die reageert op DNA-beschadigingen. P53 voorkomt neoplastische veranderingen door drie mechanisme:

    • Activering van tijdelijke rust in de celcyclus

    • Inductie van permanente rust. De cel verlaat de celcyclus (veroudering = senescentie).

    • Aansturen van geprogrammeerde celdood (apoptose).

    Bij DNA-schade wordt p53 geactiveerd als transcriptiefactor. Dit leidt tot de transcriptie van vele genen, die de cel in een rustfase brengen of tot apoptose aansporen. De transcriptie van het eiwit p21 remt cycline-CDK complexen en remt de fosforylering van RB. Hierdoor komt de cel in een kleine pauze om het DNA te herstellen. De transcriptie van andere eiwitten stimuleren repair-pathways. Wanneer het DNA hersteld is, neemt de concentratie p53 af en kan de cel verder in de celcyclus. Wanneer reparatie niet lukt, ondergaat de cel permanente rust (veroudering) of apoptose.

    Verlies van de functie van p53 leidt ertoe dat DNA-schade niet gerepareerd wordt. Hierdoor gaan mutaties zich ophopen en blijven cellen zich delen ondanks de schade. Dit leidt tot kwaadaardige tumoren.

    APC/β-catenine route

    APC en β-catenine zijn componenten van de WNT-signaalroute. In rustende cellen vormt β-catenine een complex met APC. Dit leidt tot afbraak van β-catenine, waardoor de concentratie verlaagd wordt. WNT-moleculen binden aan receptoren in het plasmamembraan. Hierdoor worden de APC/ β-catenine complexen uit elkaar gehaald. De concentratie β-catenine stijgt in het cytoplasma en β-catenine wordt naar de kern gevoerd. Hier bindt het aan transcriptiefactoren, waardoor uiteindelijk eiwitten voor celcyclusprogressie worden gesynthetiseerd.

    Wanneer APC gemuteerd of afwezig is, kan de vernietiging van β-catenine niet optreden. De cellen gedragen zich daardoor alsof ze constant gestimuleerd worden door de WNT-route. Er vindt constant proliferatie plaats.

    Apoptose

    Apoptose is een reactie op verschillende aandoeningen aan cellen, die kunnen leiden tot disfunctie of maligniteit. In kankercellen wordt de apoptose bemoeilijkt, omdat deze cellen minder gevoelig worden voor apoptose-signalen. Daarnaast kunnen er mutaties zijn in eiwitten die apoptose aansturen (p53).

    Er zijn twee programma’s die apoptose kunnen activeren.

    • Extrensieke pathway
      geactiveerd door externe signaalmoleculen die binden aan een doodreceptor.

    • Intrensieke pathway
      geactiveerd door stress die ontstaat na DNA-schade. Onder invloed van p53.

    Belangrijk voor apoptose zijn de pro-apoptotische eiwitten BAX en BAK. Deze stimuleren direct de permiabilisatie van het buitenste mitochondriale membraan, er worden poriën geopend, waardoor cytochroom c in het cytosol lekt. Hierdoor wordt caspase 9 geactiveerd. De zustereiwitten van BAX/BAK, namelijk BCL, remmen de activiteit van BAX en BAK. Sommige tumoren voorkomen apoptose door het remmen van caspase 9 met IAPs. Daarnaast komt het voor dat caspase helemaal niet geactiveerd kan worden.

    Telomerase

    Normale cellen kunnen 60 tot 70 keer verdubbelen. Daarna worden zij uit de celcyclus gehaald en worden zij senescent. Dit proces wordt veroorzaakt door de verkorting van de telomeren, te korte telomeren worden herkend door DNA-repair eiwitten, waarna de celcyclus wordt gestopt. Tumorcellen ontwijken deze celveroudering. Het enzym telomerase is extra geactiveerd, waardoor de DNA telomeren constant verlengd kunnen worden.

    Angiogenese

    Tumoren kunnen niet groter dan 1 tot 2 mm worden zonder dat zij gevasculariseerd worden, De tumorcellen hebben aanvoer van voedingstoffen en zuurstof nodig en afvoer van afvalstoffen. Kankercellen kunnen neo-angiogenese stimuleren, waardoor nieuwe bloedvaten worden gevormd in het gezwel. Deze angiogenese is later van belang voor metastase.

    Metastase

    Invasie en metastase zijn kenmerkend voor kwaadaardige tumoren. Zij zijn de belangrijkste oorzaak vaan kanker-gerelateerd overlijden. De metastase kan worden ingedeeld in twee fase:

    • Invasie van de extracellulaire matrix
      weefsels zijn van elkaar gescheiden door een extracellulaire matrix, het basaalmembraan en de bindweefsel laag. Tumorcellen moeten interacties aangaan met deze lagen om naar andere weefsels te komen. Hierbij wordt de extracellulaire matrix deels afgebroken door enzymen die de tumor uitscheidt (protease) Vervolgens verplaatsen de tumorcellen zich door de afgebroken extracellulaire matrix.

    • Verspreiding via bloedvaten, lymfe of lichaamsholten.
      binnen de circulatie hebben tumorcellen de neiging om samen te klonteren. Dit verhoogt de overleving van de tumor. De plaats waar de circulerende tumor zich vestigt, hangt af van de plaats van de primaire tumor. Metastasen uit de prostaat vestigen zich bijvoorbeeld vaak in het bot.

    Moleculaire basis van multistep carcinogenese

    Kanker ontstaat dus door langdurige opeenvolging van mutaties. De mutatie van APC gebeurt vroeg in het proces en verlies van p53 treedt later op. De timing van andere wijzigingen is variabel. Verschillende mutaties zijn nodig om de totale eigenschappen van een tumorcel te verkrijgen.

    Pathologie: Wat zijn mogelijke infectieziekten van aderen? - Chapter 11

    Pathologie: Wat zijn mogelijke infectieziekten van aderen? - Chapter 11

    Atherosclerose

    Atherosclerose wordt gekenmerkt door laesies van de tunica intima (atheromen of atherosclerotische plaques) die het lumen van het bloedvat binnendringen. Een atheroom bestaat uit een zachte, gele kern van vetten, schuimcellen en afbraakproducten, die bedekt is met een witte, fibreuze kap opgebouwd uit gladde spiercellen, macrofagen, collageen en andere componenten. Atherosclerotische plaques kunnen scheuren, wat kan leiden tot stolling en trombose, of vorming van aneurysmata. Atherosclerose is verantwoordelijk voor zeer veel morbiditeit en mortaliteit in de Westerse wereld. Ischemische hartziekten en myocardinfarcten (MI’s) zijn uitingen van atherosclerose en ook cerebrovasculaire accidenten (CVA’s) kunnen hierdoor veroorzaakt worden.

    Atherosclerose komt vooral voor in de Westerse wereld en in mindere mate in Centraal en Zuid Amerika, Afrika en delen van Azië. Prevalentie en ziektelast wordt mede bepaald door risicofactoren, waarvan sommige verworven en afhankelijk van leefwijze zijn, terwijl anderen genetisch zijn. Deze risicofactoren versterken elkaar met een vermenigvuldiging. Voorbeelden van constitutionele risicofactoren zijn:

    • Leeftijd – hoewel atherosclerose progressief is, presenteert het zich klinisch pas rond de 30-50 jaar. De incidentie van een MI neemt met een 5-voud toe tussen de 40 en 60 jaar. Overlijden ten gevolge van ischemische hartziekte neemt met de leeftijd toe.

    • Geslacht – mannen hebben over het algemeen een hogere kans om atherosclerose te ontwikkelen dan vrouwen. Vrouwen voor de menopauze zijn redelijk beschermd tegen atherosclerose vanwege de aanwezigheid van oestrogenen. Na de menopauze neemt de incidentie van atherosclerosegeassocieerde aandoeningen toe. Geslacht beïnvloedt ook andere factoren zoals hemostase, genezing na een infarct en myocardiale modellering.

    • Genetica – familiegeschiedenis is de meest significante onafhankelijke risicofactor voor atherosclerose. Hoewel overerfbare aandoeningen zoals familiaire hypercholesterolemie zijn geïdentificeerd, is het grootste gedeelte van overerfbare atherosclerose multifactorieel met overerving van verschillende polymorfismen en familiaire clustering van andere risicofactoren zoals diabetes en hypertensie.

    Voorbeelden van aanpasbare risicofactoren zijn:

    • Hyperlipidemie of beter gezegd hypercholesterolemie, met hoge levels van LDL-cholesterol geven een hogere kans op atherosclerose. LDL geeft in de periferie cholesterol af aan weefsels, maar kan zich ophopen in wanden van bloedvaten, wat leidt tot vorming van atherosclerotische plaques. HDL-cholesterol neemt juist cholesterol op uit weefsels en transporteert het naar de lever voor excretie. Hogere niveaus van HDL zijn dan ook gecorreleerd met minder risico op atherosclerose.

    • Hypertensie ook een risicofactor voor atherosclerose. Hypertensie alleen verhoogt het risico op ischemische hartziekten met 60% en kan linkerventrikelhypertrofie veroorzaken, wat ischemische hartziekten ook bevordert.

    • Roken is een bewezen risicofactor. Het jarenlang roken van 1 pakje sigaretten per dag verdubbelt de kans op overlijden aan ischemische hartziekten.

    • Diabetes Mellitus induceert hypercholesterolemie en verhoogt het risico op atherosclerose. Het aantal MI’s is bij diabetici twee keer zo hoog en ook CVA’s en gangreen ten gevolge van atherosclerose komen vaker voor.

    Cardiovasculaire aanvallen

    In 20% van de cardiovasculaire aanvallen is er geen sprake van hypertensie, hyperlipidemie, roken of diabetes. Er spelen dus ook andere factoren mee.

    • Inflammatie begeleidt atherogenese en de formatie van atherosclerotische plaques. Systemische inflammatie kan hierbij een rol spelen. C-reactieve proteïne (CRP), dat gebruikt wordt als maat van inflammatie, wordt daarom als risicofactor voor atherosclerose gezien. CRP is een acute-fase-eiwit, dat door de lever gemaakt wordt en het immuunsysteem ondersteunt bij infectie. Echter, in bloedvaten kan het endotheel activeren en bloedstolling faciliteren. CRP vertoont een sterke correlatie met MI’s, perifere arteriële insufficiëntie en plotseling overlijden aan hartziekte.

    • Hyperhomocysteïnemie: klinische en epidemiologische studies tonen een verband tussen homocysteïneniveaus en coronairarterieaandoeningen, perifeer arteriële insufficiëntie, CVA’s en diep-veneuze trombose (DVT). Een te laag foliumzuur- en vitamine-B12-gehalte kunnen leiden tot verhoogde homocysteïneniveaus.

    • Het metabole syndroom wordt gekarakteriseerd door een aantal abnormaliteiten die samenhangen met insulineresistentie. Dit zijn glucose-intolerantie, hypertensie en centrale obesitas. Dit gaat samen met een staat van systemische inflammatie en een verhoogd risico op atherosclerose.

    • Lipoproteïne is een aangepaste vorm van LDL die een verhoogd risico op coronaire en cerebrovasculaire aandoeningen geeft.

    • Factoren die de hemostase beïnvloeden, zoals trombine en plasminogeen-activator-inhibitor-1 kunnen bijdragen aan vasculaire pathologie.

    • Andere factoren zoals weinig beweging, stress en obesitas verhogen het risico op atherosclerose.

    Pathogenese van atherosclerose

    De reactie-op-schade-hypothese verklaart het ontstaan van atherosclerose en beschrijft atherosclerose als een respons van chronische inflammatie en genezingsprocessen van de arteriële wand die ontstaat ten gevolge van endotheelschade. Progressie van de laesie ontwikkelt zich door interactie van lipoproteïnen, macrofagen en T-lymfocyten met normale cellulaire bestandsdelen van de arteriële wand. In dit model liggen een aantal processen ten grondslag aan de vorming van atherosclerose:

    • Endotheelschade veroorzaakt vasculaire permeabiliteit, leukocytadhesie en trombose. Deze schade wordt veroorzaakt door blootstelling aan eerdergenoemde risicofactoren.

    • Accumulatie van lipoproteïnen in de vaatwand treedt op (LDL en geoxideerd LDL).

    • Monocytadhesie aan het endotheel, gevolgd door migratie in de tunica intima en de ontwikkeling tot zogenoemde schuimcellen.

    • Trombocytadhesie

    • Afgifte van factoren door geactiveerde trombocyten, macrofagen en cellen van de vaatwand die gladde spiercellen rekruteren.

    • Proliferatie van gladde spiercellen en productie van extracellulaire matrix (ECM).

    • Intracellulaire en extracellulaire accumulatie van vet

    • Zie ook de figuren op pagina 499.

    Endotheelschade

    Schade aan het endotheel is de hoeksteen van de reactie-op-schade-hypothese en dus van de vorming van atherosclerose. Wat ook de oorzaak is van de endotheelschade, de tunica intima van het vat zal zich verdikken en atheromen kunnen ontstaan. Gezond endotheel kan onder invloed van bepaalde stoffen endothele dysfunctie vertonen. Dit gaat gepaard met een verhoogde endothele permeabiliteit, leukocytadhesie en veranderde genexpressie. Factoren zoals hypertensie, hyperlipidemie, toxinen van sigaretten, homocytsteïne en zelfs infecties en inflammatoire cytokinen dragen hier allemaal aan bij. De twee meest belangrijke oorzaken van endothele dysfunctie zijn echter hemodynamische verstoringen en hypercholesterolemie.

    Bij hemodynamische verstoringen hebben de atherosclerotische plaques de neiging zich te ontwikkelen op vaateinden, vaatsplitsingen en de achterzijde van de abdominale aorta, omdat daar de stroming verstoord is (turbulent). Laminaire flow leidt tot productie van stoffen die beschermen tegen atherosclerose.

    Lipoproteïnen binden vetten en transporteren deze zo in het bloed. Dyslipoproteïnemie kan ontstaan ten gevolge van mutaties of een onderliggende aandoening en hierbij treedt een verstoring op van lipoproteïnen. Veel voorkomende lipoproteïneabnormaliteiten die leiden tot atherosclerose zijn een verhoogd LDL, een verlaagd HDL en een verhoogd lipoproteïne. De rol van hypercholesterolemie in atherosclerose wordt bevestigd door de volgende bevindingen: de meest voorkomende vetten in atherosclerotische plaques zijn cholesterol en cholesterolesters. Genetische defecten die leiden tot hyperlipoproteïnemie zijn geassocieerd met sterk versnelde atherosclerose. Daarnaast blijkt uit studies dat de hoeveelheid LDL gecorreleerd is met de mate van atherosclerose en dat vermindering van cholesterol leidt tot regressie van de plaques.

    Hypercholesterolemie verhoogt lokaal de productie van vrije radicalen, die weefselschade bewerkstelligen en zo atherosclerose bevorderen. Ook leidt hypercholesterolemie tot ophoping van lipoproteïnen in de tunica intima. Hier vindt oxidatie van het LDL plaats door middel van vrije radicalen geproduceerd door macrofagen en endotheel. Uiteindelijk leidt dit tot de ontwikkeling van schuimcellen en afgifte van cytokinen en groeifactoren door endotheel en macrofagen, die migratie van monocyten bevorderen. Geoxideerd LDL is verder ook toxisch en leidt tot endothele dysfunctie.

    Ook inflammatoire cellen en pathways dragen bij aan het begin, de progressie en complicaties van atherosclerotische laesies. Normale vaatwanden binden niet aan inflammatoire cellen, maar dysfunctioneel endotheel brengt adhesiemoleculen zoals VCAM-1 tot expressie, dat monocyten en T-cellen kan binden. Migratie in de tunica intima volgt onder invloed van lokale cytokinen. Monocyten zullen zich hier ontwikkelen tot macrofagen en vervolgens (geoxideerd) LDL opnemen. Macrofagen maken reactieve zuurstof soorten aan die oxidatie van LDL en proliferatie van gladde spiercellen stimuleren. T-lymfocyten migreren ook naar de tunica intima en vertonen hier interactie met macrofagen, wat leidt tot een chronische staat van inflammatie. Als gevolg van de chronisch inflammatoire staat zullen leukocyten en endotheelcellen cytokinen produceren die leiden tot gladde-spiercel-proliferatie en ECM-synthese. Gladde-spiercel-proliferatie en ECM-depositie kunnen een kleine laesie ontwikkelen tot een atheroom. Gladde spiercellen in de intima kunnen gerekruteerd worden vanuit circulerende precursors en onder invloed van groeifactoren zoals PDGF, FGF en TGF-alfa ondergaan zijn proliferatie en ECM-synthese.

    Ook al bestaan er uitgebreide aanwijzingen dat infecties een rol spelen in atherosclerose, is definitief bewijs hiervoor nog niet geleverd. Hypesvirussen, CMV en Chlamydia pneumoniae zijn gedetecteerd in atherosclerotische plaques. Het is mogelijk dat plaques geïnfecteerd raken met pathogenen en dat de opeenvolgende immuunrespons leidt tot ontwikkeling van de plaque.

    Morfologie en histologie

    De vroegste atherosclerotische laesies worden fatty streaks genoemd. Zij bestaan uit met vet gevulde macrofagen. Deze laesies beginnen als kleine gele stippen en ontwikkelen zich tot lange vettige stroken. De relatie tussen fatty streaks en atherosclerose is niet geheel duidelijk; sommige ontwikkelen zich tot plaques, terwijl anderen dit niet doen.

    Atherosclerotische plaques zijn meestal 0,3 tot 1,5 cm groot en zien er wit tot geel uit. Veel plaques zijn vlekkerig en onregelmatig en bedekken slechts een gedeelte van de arteriële wand, dit is vanwege lokale hemodynamische verstoringen. Het meest aangedaan zijn de lage abdominale aorta, de kransslagaderen, de carotis interna en de cirkel van Willis. Atherosclerotische plaques bestaan uit 3 componenten:

    1. Cellen, zoals gladde spiercellen, macrofagen en T-cellen

    2. ECM, zoals collageen, elastische fibers en proteoglycanen

    3. Intracellulair en extracellulair vet.

    Vaak bestaat aan de buitenzijde een fibreus kapsel van gladde spiercellen en relatief compact collageen, waaronder zich een cellulair gebied bevindt met macrofagen, T-cellen en gladde spiercellen. Diep van binnen bevindt zich een necrotische kern met lipiden, afbraakproducten, schuimcellen, fibrine en plasmaeiwitten. Neovascularisatie kan aan de uiteinden voorkomen. Plaques kunnen calcificatie ondergaan. Plaques zijn gevoelig voor veranderingen, die klinisch erg belangrijk zijn:

    • Scheuring, ulceratie of erosie van de plaque brengt bloed in contact met zeer trombogene stoffen. Dit induceert trombose en kan tot ischemie leiden.

    • Schade aan de plaque kan tot een bloeding binnen in de plaque leiden die de plaque vergroot of tot scheuring kan leiden.

    • Scheuring van de plaque kan afbraakproducten in het bloed loslaten en zo micro-emboli creëren.

    • Atherosclerose-geïnduceerde druk of ischemische atrofie kan de onderliggende media zo aantasten dat elastine verdwijnt en een aneurysma ontstaat.

    Consequenties van atherosclerose

    Grote elastische arteriën (aorta, carotiden, arteria iliaca) en musculaire arteriën van gemiddelde grootte (coronairarteriën) zijn de plekken waar atherosclerose toeslaat. Myocardinfarct, cerebraal infarct, aortale aneurysmata en perifere arteriële insufficiëntie zijn de belangrijkste consequenties van atherosclerose. Deze ontstaan ten gevolge van drie belangrijke processen: chronische atherosclerotische stenose, plaqueruptuur en -trombose, en aneurysmata.

    In kleine arteriën kunnen atherosclerotische plaques over tijd het vaatlumen blokkeren, waardoor er chronische stenose optreedt, wat de bloedstroom verstoort en ischemie veroorzaakt. Uiteindelijk kan dit tot kritieke stenose leiden, waarbij een tekort aan zuurstof en voedingsstoffen ontstaat. Wanneer dit in de kransslagaderen gebeurt ontstaat stabiele angina pectoris. De meest gevaarlijke complicatie is ruptuur van de plaque en trombose. Andere mogelijke gevolgen van chronische atherosclerotische stenose zijn chronische ischemische hartziekte, claudicatio intermittens, ischemische encefalopathie en darmischemie.

    Plaqueruptuur wordt vaak snel gevolgd door partiële of complete vasculaire trombose, wat leidt tot een acuut weefsel infarct (bv. myocard of cerebraal). Er zijn verschillende soorten veranderingen die hiertoe kunnen leiden, zoals scheuring van de plaque, erosie/ulceratie van de plaque of bloeding binnen het atheroom. Het is duidelijk geworden dat de laesie die leidt tot het myocardinfarct en andere acute coronaire syndromen niet zozeer een stenose door een laesie is, maar de plotselinge verandering van zo’n laesie. Het nadeel hiervan is dus dat een groot gedeelte van asymptomatische patiënten een realistisch risico loopt op het ontwikkelen van een coronair infarct. Plaqueruptuur is afhankelijk van intrinsieke en extrinsieke factoren, waarbij toename en afname van collageen en ander componenten van het fibreuze kapsel een grote rol spelen. Ook vasoconstrictie of veranderingen in bloeddruk en heftige emoties kunnen een effect hebben op plaqueruptuur. Niet alle plaquerupturen leiden tot trombose.

    Pathologie: Wat zijn mogelijke aandoeningen van de witte bloedcellen? - Chapter 13

    Pathologie: Wat zijn mogelijke aandoeningen van de witte bloedcellen? - Chapter 13

    Neoplastische afwijkingen

    De neoplastische afwijkingen van witte bloedcellen zijn ontzettend gevarieerd. Bij de meeste neoplastische afwijkingen van witte bloedcellen is er sprake van nonrandom chromosomale abnormaliteiten, vooral chromosomale translocaties:

    • De genen die gemuteerd of veranderd zijn, spelen vaak een cruciale rol in de ontwikkeling, groei of overleving van de maligne cel. Hierdoor zijn bepaalde mutaties geassocieerd met specifieke soorten tumoren. Soms zijn deze mutaties zelfs nodig om een diagnose te stellen

    • Onco-eiwitten blokkeren vaak normale ontwikkelingsprocessen, activeren pro-groei signalen pathways of beschermen cellen van apoptotische cel dood. Veel onco-eiwitten veroorzaken een stop in de differentiatie, waardoor de proliferatie sneller gaat. Dit is sterk aanwezig bij acute leukemie. Andere mutaties in transcriptionale regulatoren zorgt voor verbetering van het vernieuwen van de tumorcellen. Deze soort mutaties gaan vaak samen met mutaties die een constitutief actieve tyrosine kinase geactiveerde RAS activeren. Ook inhiberen de mutaties de apoptose, deze zijn vooral aanwezig bij hematologische maligniteiten.

    • Proto-oncogenen zijn vaak geactiveerd in lymfe weefsel, door fouten die plaatsvinden tijdens het herschikken en diverser maken van de antigen receptor genen.

    Erfelijke genetische factoren

    Verschillende genetische ziektes, zoals het syndroom van Bloom en Fanconi anemie bevorderen genomische instabiliteit. Hierdoor is een vergroot risico op acute leukemie. Ook het syndroom van Down (trisomie 21) en type 1 neurofibromatose zijn geassocieerd met een verhoogde incidentie van leukemie tijdens de kinderjaren.

    Virussen

    Drie lymfotropische virussen, human T-cell leukemia virus-1 (HTLV-1), Epstein-Barr virus (EBV) en Kaposi sarcoma herpesvirus/human herpesvirus-8 (KSHV/HHB-8), zijn virussen die een causale rol spelen bij lymfoma’s. HTLV-1 vergroot de kans op T-cel leukemie/lymfoma’s bij volwassenen. EBV werd gevonden bij Burkitt lymfoma’s en in sommige gevallen bij Hodgkin lymfoma’s. Veel B-cel lymfoma’s en zeldzaam NK-cel lymfoma’s, ontstaan bij T-cel immunodeficiëntie.

    Chronische ontsteking

    Een gelokaliseerde ontsteking kan het lichaam vatbaarder maken voor lymfoïde neoplasie, dit ontstaat vrijwel in het ontstoken weefsel. Voorbeelden hiervan zijn de H. pylori infectie en gastrische B-cel lymfoma’s, en borst implantaties en een subtype van T-cel lymfoma’s. Ernstige T-cel immunodeficiëntie vergroot de kans op B-cel lymfoma’s.

    Introgene factoren

    Radiotherapie en sommige vormen van chemotherapie die gebruikt worden om kanker te behandelen, vergroten ook de kans op myeloïde en lymfoïde neoplasma’s. Dit komt door de ionizerende eigenschappen van de radiotherapie en de chemotherapeutische medicatie op hematolymfoïsch progenitor cellen.

    Roken

    De incidentie van acute myeloïde leukemie is 1,3-2 keer zo groot bij rokers. Dit komt waarschijnlijk door de verhoogde blootstelling aan straling.

    Myeoloïde neoplasma’s

    Deze groep heeft een overeenkomende afkomst, namelijk de hematopoïetische progenitor cellen. De ziektes hebben voornamelijk betrekking op het beenmerg en soms ook op de secundaire lymfe organen; de milt, lever en lymfeknopen. De symptomen zijn gerelateerd aan veranderde hematopoïese. Het is onder te verdelen in drie categoriën:

    • Acute myeloïde leukemies, waarbij een opeenhoping van nog niet volledig gerijpte myeloïd blasten in het been merg de normale hematopoïese onderdrukken

    • Myelodyplastisch syndroom, waarbij een fout in de ontwikkeling van myeloïde progenitors leidt tot ineffectieve hematopoïese, wat weer leidt tot cytopenias.

    • Myeloproliferatieve ziektes, waarbij er een toegenomen productie is van een of meerdere soorten bloedcellen.

    De pathogenese van myeloïde neoplasma’s kan het best worden uitgelegd aan de hand van normale hematopoïese. Tijdens de normale hematopoïese worden hematopoïetische stamcellen hiërarchisch omgezet in progenitor cellen en die differentiëren. Het proces wordt geregeld door homeostatische feedback mechanismes onder invloed van cytokines en groeifactoren die de productie van rode bloedcellen, witte bloedcellen en bloedplaatjes in het beenmerg regelen. De specifieke manifestaties van de verschillende myeloïde neoplasma’s worden beïnvloed door:

    • De positie van de getransformeerde cel binnen de hiërarchie van de progenitor 

    • Het effect van de transformatie op de differentiatie, dit kan geïnhibeerd worden door specifieke oncogenetische mutaties.

    Acute Myeloïde Leukemie

    Acute Myeloïde Leukemie (AML) is een tumor van hematoïpetische progenitor cellen. Deze tumor wordt veroozaakt door bepaalde oncogenetische mutaties die de differentiatie belemmeren. Hierdoor onstaat er in het beemerg een ophoping van myeloïde blasten die nog niet volledig ontwikkeld zijn. Dit zorgt ervoor dat het beenmerg zijn functie niet meer kan uitvoeren en zo onstaat er anemie, trombocytopenie en neutropenie. AML komt voor op alle leeftijden, maar heeft een piekincidentie rond het 60e levensjaar. De diagnose is gebaseerd op tenminste 20% myeloïde blasten in het beenmerg.

    Myeloproliferatieve afwijkingen

    Het meest voorkomende pathogenese van myeloproliferatieve afwijkingen is de aanwezigheid van gemuteerde, actieve tyrosine kinases of andere aberraties in signaling pathways die leiden tot groeifactor onafhankelijkheid. Normaal gesproken binden hematopoïetische groeifactoren aan oppervlakte receptoren en activeren zo de tyrosine kinases. Deze activeren een pathway dat ervoor zorgt dat er groei en overleving plaatsvindt. Het gemuteerde tyrosine kinase van myeloproliferatieve afwijkingen omzeilt de ingebouwde controles. Dit leidt tot groeifactor onafhankelijke proliferatie en overleving van het been merg progenitorcellen. Omdat de tyrosine kinase mutaties de differentiatie niet verminderen, is de consequentie dat er een toename van de productie van een of meer van de gerijpte bloed elementen, (zoals rode bloedcellen, witte bloedcellen etc.) ontstaat.

    Er zijn verschillende factoren die de verschillende soorten myeloproliferatieve afwijkingen gemeen hebben:

    • Een toename van proliferatieve ‘drive’ in het beenmerg

    • Neoplastische cellen komen in secundaire hematopoïetische organen en gan hier extramedullaire hematopoïese produceren

    • Verschillende transformaties leiden tot beenmerg fibrose en perifeer bloed cytopenië

    • Verschillende transformaties leiden tot acute leukemie

    Sommige myeloproliferatieve afwijkingen worden veroorzaakt door bepaalde mutaties, in het specifiek de tyrosine kinases. Hierdoor is moleculaire test belangrijker geworden voor de diagnose en de therapie keuze. De diagnose wordt gebaseerd op klinische, laboratoria en moleculaire criteria.

    Chronische myelogeneuze leukemie

    Chronische myelogeneuze leukemie (CML) is een vorm van myeloproliferatieve afwijkingen die wordt veroozaakt door een chimerisch BCR-ABL gen. Dit gen is verantwoordelijk voor de synthese van BCR-ABL tyronise kinase. Tyrosine kinase wordt normaal gesproken gereguleerd door ligand dimerizatie en autofosforylatie. Dit produceert een actief kinase die andere eiwitsubstraten kan fosforyleren. De BCR helft van BCR-ABL bevat een dimerisatie dat leidt tot de activatie van het ABL tyrosine kinase helft. Het ABL kinase fosforyleert eiwitten die een signaal induceren dat pro-groei en pro-overleving pathways activeert. BCR-ABL begeleidt vooral de proliferatie van granulocyten en megakaryotische progenitor cellen. Ook zorgt het ervoor dat granulocyten die nog niet volledig ontwikkeld zijn, vrijkomen van het beenmerg en in het bloed belanden.

    Aandoeningen van Leukocyten

    Aandoeningen van witte bloedcellen kunnen worden ingedeeld in twee groepen, namelijk de afname van de leukocytniveaus (leukopenie) en proliferatieve aandoeningen, waarbij een leukocytose ontstaat. Leukopenie betreft een afname van witte bloedcellen in de bloedstroom. Dit komt meestal door een tekort aan neutrofiele granulocyten (neutropenie, granulocytopenie). Een tekort aan lymfocyten (lymfopenie) is zeldzamer en komt voor bij congenitale aandoeningen van het immuunsysteem, HIV-infectie, na therapie met glucocorticoïden of cytotoxica, auto-immuun aandoeningen, ondervoeding en sommige acute virale infecties. In dit laatste geval kan activatie van lymfocyten leiden tot ophoping van lymfocyten in lymfeklieren en endotheel, wat tot een vermindering van het totaal aantal lymfocyten leidt.

    Neutropenie en agranulocytose

    Neutropenie omvat een tekort aan neutrofiele granulocyten, terwijl een agranulocytose een reductie in neutrofielen beschrijft die zo sterk is dat bacteriële en schimmelinfecties kunnen optreden. De oorzaken hiervan worden ingedeeld in 2 groepen met een aantal kenmerken:

    1. Inadequate of ineffectieve granulopoiese

    • Onderdrukking van hematopoietische stamcellen door bijvoorbeeld infiltratieve beenmergaandoeningen.

    • Onderdrukking van precursors van granulocyten door bepaalde medicijnen

    • Aandoeningen die gepaard gaan met ineffectieve hematopoiese, zoals megaloblastische anemie en myelodysplastische syndromen

    • Zeldzame congenitale aandoeningen, zoals het syndroom van Kossmann

    1. Toename in afbraak van neutrofielen

    • Immunologisch gemedieerde schade door SLE, bepaalde medicijnen, of e.c.i.

    • Splenomegalie geeft een verhoogde afbraak van neutrofielen in de milt

    • Verhoogd verbruik vanwege een te sterke bacteriële of schimmelinfectie.

    De meest voorkomende oorzaak van agranulocytose is medicijngebruik. Dit kan optreden bij sommige chemotherapieën, aminopyrine (tegen koorts), chlooramfenicol (antibiotica), sulfonamiden (antibiotica), chloorpromazine (antipsychoticum), thio-uracil (bij de ziekte van Graves) en fenylbutazon (NSAID).

    Beenmerghypercellulariteit begeleidt aandoeningen waarbij het beenmerg de agranulocytose probeert te compenseren. Beenmerghypocellulariteit ontstaat wanneer medicijnen schade aanrichten aan precursors van granulocyten. Infecties zijn een veelvoorkomend gevolg van agranulocytose.

    Symptomen zijn onder andere necrotische ulcera in de mond en oropharynx. Verschillende levensbedreigende bacteriële en schimmelinfecties kunnen voorkomen in longen, urinewegen en nieren. Een groot risico op Candida- en Aspergillus-infecties bestaat. De symptomen van neutropenie zijn gerelateerd aan infectie (algehele malaise, koude rillingen, koorts, zwakheid en moeheid). Infecties die bij agranulocytose optreden, kunnen binnen een aantal uur of dagen fataal zijn.

    Proliferatieve aandoeningen: reactief

    Leukocytose is een toename in het aantal witte bloedcellen en treedt vaak op bij inflammatie. Het aantal leukocyten in perifeer bloed is afhankelijk van:

    • De hoeveelheid opgeslagen leukocyten in beenmerg, thymus, bloed en weefsel,

    • De snelheid van afgifte van deze plekken naar het bloed,

    • Het deel van de cellen dat bindt aan de wand van bloedvaten (marginale pool),

    • De snelheid van extravasatie van cellen naar het weefsel.

    De belangrijkste oorzaken van leukocytose zijn:

    • Verhoogde productie in het beenmerg door een chronische infectie, paraneoplastische aandoening of een myeloproliferatieve aandoening.

    • Toename afgifte leukocyten aan het bloed door endotoxemie, een infectie of hypoxie

    • Verminderde hechting aan wand bloedvaten door fysieke inspanning, catecholamines

    • Verminderde extravasatie in weefsels door glucocorticoïden

    Onder verschillende pathologische omstandigheden kunnen cytokinen proliferatie van verschillende soorten leukocyten geven. Zo ontstaat neutrofiele leukocytose (acute bacteriële infectie, steriele inflammatie), eosinofiele leukocytose (astma, hooikoorts, parasieten, drugs), basofiele leukocytose (zeldzaam), monocytose (chronische infecties, bacteriële endocarditis) en lymfocytose (chronische infectie, virale infectie).

    Onderscheid tussen reactieve en neoplastische leukocytose is meestal simpel, maar kan in 2 gevallen lastig zijn. Acute virale infectie in kinderen kan grote lymfocyten geven die lijken op neoplastische cellen, maar dit niet zijn. In ernstige infecties kunnen immature granulocyten een beeld geven van myeloïde leukemie, terwijl dit niet zo is.

    Lymfadenitis

    Lymfocyten zullen na ontwikkeling vanuit precursors in beenmerg (B cellen) en thymus (T cellen) via het bloed terecht komen in secundaire lymfoïde organen, zoals lymfeklieren, milt, MALT en BALT. Activatie van immuuncellen leidt tot morfologische veranderingen in lymfeklieren. Binnen enkele dagen na stimulatie met antigenen zullen de primaire follikels groeien en veranderen tot germinal centers. Dit faciliteert effectieve productie van antilichamen. De mate van verandering is afhankelijk van het ziekteproces, kleine infecties leiden tot subtiele veranderingen, terwijl significante infecties tot sterke vergroting van lymfeklieren kunnen leiden. Sommige aandoeningen vertonen karakteristieke reacties van lymfeklieren, andere aandoeningen vertonen meer algemene reacties. Twee algemene reacties zijn acute nonspecifieke lymfadenitis en chronische nonspecifieke lymfadenitis. Acute nonspecifieke lymfadenitis ontstaat vaak in de cervicale regio na drainage van gebieden die geïnfecteerd zijn zoals keelholte en amandelen. Infectie van de extremiteiten leidt tot lymfadenitis in de axillaire of inguinale regio’s. Bij een acute appendicitis kan lymfadenitis van de lymfeknopen van het mesenterium ontstaan. Het gevolg is een vergroting van lymfeklieren die vaak pijnlijk zijn met microscopisch zichtbare reactieve germinal centers. Ernstige infecties kunnen leiden tot abces formatie van lymfeklieren. Chronische nonspecifieke lymfadenitis chronische immunologische stimuli veroorzaken verschillende soorten reacties in lymfeklieren.

    • Folliculaire hyperplasie wordt veroorzaakt wanneer de humorale immuunrespons wordt gestimuleerd. Grote rechthoekige germinal centers worden hierbij omringd door een mantelzone die kleine naieve B cellen bevat. Oorzaken van folliculaire hyperplasie zijn reumatoide artritis, toxoplasmosis en vroege stadia van HIV infectie. Histologisch is er een verschil tussen reactieve folliculaire hyperplasie en neoplastische folliculaire hyperplasie.

    • Paracorticale hyperplasie wordt veroorzaakt wanneer de T-cel gemedieerde immuunrespons wordt gestimuleerd. De T-cel regio bevat grote T-cellen met ronde nuclei. De vergrote T-cel regio’s verdrukken de B-cel follikels. Onderscheid tussen reactieve en neoplastische hyperplasie kan hier soms lastig zijn.

    • Sinus histiocytosis / reticulaire hyperplasie beschrijft een toename van cellen die de lymfatische sinusoïden omlijnen. Deze vorm van hyperplasie komt vooral voor bij lymfeklieren die kanker draineren, zoals bij borstkanker.

    Lymfeklieren zijn vaak niet gevoelig bij chronische nonspecifieke lymfadenitis, omdat groei van de lymfeklieren langzaam plaatsvindt. Vaak komt chronische nonspecifieke lymfadenitis voor in de axillaire en inguinale lymfeklieren, omdat deze lymfeklieren grote gedeelten van het lichaam draineren.

    Proliferatieve aandoeningen: neoplasma

    Maligniteiten van witte bloedcellen zijn klinisch de belangrijkste aandoeningen van witte bloedcellen. Ze zijn onder te verdelen in:

    • Lymfoïde neoplasma: Dit is een groep tumoren van B, T en NK-cellen.

    • Myeloïde neoplasma: Deze tumoren ontstaan vanuit hematopoietische progenitor cellen. Deze groep is verder in te delen in 3 subgroepen:

      • Acute myeloïde leukemien: immature progenitors hopen op in het beenmerg.

      • Myelodysplastische syndromen: ineffectieve hematopoiese staat hier centraal.

      • Myeloproliferatieve aandoeningen: verhoogde productie van 1 of meer terminaal gedifferentiateerde myeloïde cellen. (bv. Granulocyten)

    • Histiocytosis: een groep zeldzame proliferatieve aandoeningen van macrofagen en dendrieten.

    Etiologie en pathogenese: Chromosomale translocaties en andere verworven chromosomale abnormaliteiten zijn vaak betrokken bij tumorvorming van de witte bloedcel:

    1. De genen die gemuteerd zijn spelen vaak een rol in ontwikkeling, groei of overleving van de anderszins normale cellen. Dit kunnen zowel loss-of-function mutaties, waar de normale functie wordt aangetast, of gain-of-function mutaties zijn, waar een ongezonde toename van normale activiteit plaatsvindt.

    2. Oncoproteins (onco-eiwitten) die ontstaan ten gevolge van genetische afwijkingen blokkeren vaak maturatie van cellen. Meestal houdt dit in dat differentiatie niet kan plaatsvinden en wanneer dit op een kritisch punt gebeurt, kan dit leiden tot tumoren.

    3. Proto-oncogenen worden in lymfoïde cellen vaak geactiveerd door fouten in het proces van antigen receptor gene rearrangement. Vooral tijdens diversificatie van antilichamen in B-cellen bestaat een kans dat de onderliggende genetische mechanismen leiden tot oncogene mutaties.

    Lymfomen ontstaan bijna altijd door een combinatie van genetische defecten. Defecten in groei en overleving, differentiatie en zelf-vernieuwing leiden zo bijvoorbeeld tot acute leukemie. Naast verworven genetische afwijkingen spelen ook overgeërfde genetische defecten een rol. Aandoeningen zoals syndroom van Bloom, Fanconi anemie, ataxia telangiectasia, syndroom van Down en type I neurofibromatose verhogen allen het risico op acute leukemie. Ook virussen kunnen bijdragen aan het ontstaan van lymfomen. Het Humaan T-cel Leukemie Virus-1 (HTLV-1), het Epstein-Barr Virus (EBV) en Kaposi’s sarcoom (herpesvirus-8) zijn geassocieerd met lymfomen. Omgevingsfactoren die chronische stimulatie van het immuunsysteem induceren kunnen ook lymfoïde neoplasma veroorzaken. Een voorbeeld hiervan is de relatie tussen H. Pylori infectie en B-cell lymfomen van de maag en tussen gluten-insensitiviteit en intestinale T-cel lymfomen. HIV kan B-cell lymfomen in bijna elk orgaan in het lichaam veroorzaken. Ook chemotherapie, radiotherapie en roken leiden tot een verhoogd risico op de ontwikkeling van lymfomen.

    Lymfoïde neoplasma

    Het is belangrijk een onderscheid te maken tussen lymfoïde (=lymfocytische) leukemie en lymfomen. Leukemie is een aandoening van het beenmerg en perifere bloed, terwijl lymfomen een weefselmassa beschrijven ten gevolge van proliferatie. Beiden worden echter veroorzaakt door maligniteiten van lymfocyten. Omdat leukemie zich soms presenteert met vergrote lymfeklieren en lymfomen soms gepaard gaan met aantasting van het beenmerg, worden deze termen soms door elkaar gehaald. Het doel van de termen is om onderscheid te maken in welk weefseltype de ziekte zich presenteert. Binnen de lymfomen bestaat een unieke groep met karakteristieke pathologische kenmerken genaamd de Hodgkin lymfomen. Alle andere lymfomen zijn in principe non-Hodgkin lymfomen. De klinische presentatie van de verschillende lymfoïde neoplasma wordt het vaakst bepaald door de anatomische distributie van de aandoening. Tweederde van de NHL’s en praktisch alle Hodgkin lymfomen presenteren zich met vergrote niet-gevoelige, lymfeklieren (vaak groter dan 2 cm.). Het overige een derde van de NHLs presenteren zich met symptomen die gerelateerd zijn aan extranodale plekken, zoals huid, maag en hersenen. De lymfocytische leukemien presenteren zich met verschijnselen die gepaard gaan met onderdrukking van normale hematopoiese. Het meest voorkomende plasma cel neoplasme, multiple myeloom (ziekte van Kahler) presenteert zich met pathologische fracturen en pijn.

    De classificatie van lymfoïde neoplasma onderscheid 5 groepen:

    1. Precursor B-cel neoplasma = neoplasma van immature B-cellen

    2. Perifere B-cel neoplasma = neoplasma van mature B-cellen

    3. Precursor T-cel neoplasma = neoplasma van immature T-cellen

    4. Perifere T-cel neoplasma en NK-cel neoplasma = neoplasma van mature T-cellen

    5. Hodgkin lymfomen = neoplasma die Reed-Sternberg cellen bevatten

    Chronische lymfoïde leukemie (CLL) en multiple myeloom valt onder groep 2. Acute lymfoïde leukemie (ALL) kan verder worden gespecificeerd in precursor B-cel ALL die onder groep 1 valt, en precursor T-cel ALL die onder groep 3 valt. Voordat deze groepen behandelt worden in detail, moet op de volgende zaken worden gelet:

    • Verdenking van een lymfoïde neoplasme gebeurt op basis van symptomen, maar diagnose is altijd gebaseerd op histologische examinatie.

    • De meeste lymfoïde neoplasma bevatten cellen met dezelfde antigen receptoren. Dit is zo omdat configuratie van de receptor plaatsvindt voordat de cel een tumorcel wordt. Omdat de receptoren van normale populaties van lymfocyten juist heel divers zijn, kan dit gebruikt worden als diagnostische techniek.

    • Het grootste gedeelte van lymfoïde neoplasma (85 tot 90%) ontstaat vanuit de B-cel, terwijl de rest ontstaat vanuit de T-cel. NK-cel neoplasma zijn heel zeldzaam. De meeste neoplasma zijn terug te herleiden naar een plek in de differentiatie van de cel:

      • Pre-B of pre-T lymfoblasten kunnen zich ontwikkelen tot ALL

      • Naieve B-cellen kunnen zich ontwikkelen tot CLL

      • Germinal-center B-cellen kunnen zich ontwikkelen tot Hodgkin of Burkitt lymfomen

      • Marginal-zone B-cellen kunnen zich ontwikkelen tot CLL

      • Perifere B-cellen kunnen zich ontwikkelen tot Multipel Myeloom

    Een overzicht van de totale differentiatielijn van beenmerg naar lymfeklier met bijbehorende aandoeningen is te vinden op pagina 599 van Robbins & Cotran.

    • Lymfoïde neoplasma gaan vaak gepaard met immunologische abnormaliteiten, zoals verlies van immunologische bescherming of auto-immuniteit.

    • Neoplastische B en T-cellen vertonen gedrag dat lijkt op gezonde B en T-cellen. Een voorbeeld hiervan is homing, waarbij specifieke adhesiemoleculen de locatie van de cel bepalen. Omdat lymfocyten circuleren in bloed en lymfe is de tumor echter vaak al verspreid door heel het lichaam bij diagnose. Uitzondering op deze regel zijn sommige Hodgkin lymfomen. Hodgkin lymfomen verspreiden zich vaak op een ordelijke manier, waardoor een betere prognose kan worden gesteld.

    Lymfoïde Neoplasma: Precursor B en T-cellen neoplasma

    Acute Lymfoïde Leukemie (=Acute lymfoblastische/lymfocytische leukemie)

    • Pathogenese: Neoplasma die bestaan uit immature B of T cellen vallen onder Acute Lymfoïde Leukemie (ALL). Deze cellen worden ook wel lymfoblasten genoemd. Ongeveer 85% van deze aandoeningen bestaan uit immature B-cellen en presenteren zich met name bij kinderen als een leukemie (B-ALL). De overige 15% bestaan uit immature T-cellen die zich vaak in de adolescentie presenteren als lymfoom van de thymus (T-ALL). ALL is de meest voorkomende vorm van kanker bij kinderen. Incidentie is het hoogst rond de leeftijd van 3 jaar.

    Ongeveer 90% van de ALL’s hebben numerieke of structurele chromosomale veranderingen. Het vaakst komt hyperploidie voor (>50 chromosomen), alleen of in combinatie met chromosomale translocaties. Verschillende soorten chromosomale veranderingen zijn geassocieerd met specifieke aandoeningen. Veel van deze veranderingen betreffen transcriptie factoren die normale B en T-cel ontwikkeling reguleren. Enkele mutaties zijn niet voldoende om ALL te veroorzaken, meerdere mutaties zijn hiervoor nodig.

    • Histologie: Het beenmerg is hypercellulair en sterk gevuld met lymfoblasten. Celkernen zijn iets groter dan die van kleine lymfocyten, er is weinig basofiel cytoplasma en chromatine is gecondenseerd. Massa’s in mediastinum en thymus komen voor in 50% tot 70% van de T-ALL tumoren. Histologisch moet een onderscheid worden gemaakt tussen Acute Myeloïde Leukemie (AML) en Acute Lymfatische Leukemie (ALL). Lymfoblasten in ALL hebben meer gecondenseerd chromatine, minder duidelijke nucleoli en kleinere hoeveelheiden cytoplasma. Definitieve diagnose wordt gebaseerd op kleuringen met antilichamen.

    • Immunofenotypering: Bepaalde surface-makers kunnen gebruikt worden in de diagnose, omdat ze specifiek zijn voor bepaalde celpopulaties. Kleuring voor TdT, een gespecialiseerde polymerase dat alleen voorkomt in pre-B en pre-T lymfoblasten, is positief in meer dan 95% van de gevallen. Verder komen CD10 en CD19 specifiek voor op pre-B cellen.

    • Klinisch verloop: Hoewel ALL en AML genetisch en immunofenotypisch verschillend zijn, lijken ze klinisch erg veel op elkaar. In beide aandoeningen staat de overpopulatie van blasten centraal die normale hematopoiese onderdrukken door fysieke verdrukking, competitie voor groeifactoren en andere mechanismen. Klinisch valt het volgende te onderscheiden:

      • Abrupt en heftig begin binnen dagen tot weken van de eerste symptomen.

      • Symptomen die gerelateerd zijn aan onderdrukking van het beenmerg: moeheid, anemie, koorts, infecties ten gevolge van neutropenie, bloeding ten gevolge van trombocytopenie.

      • Effecten veroorzaakt door neoplastische infiltratie: botpijn ten gevolge van beenmerg expansie en infiltratie van het subperiosteum, gegeneraliseerde lymfadenopathie, splenomegalie, hepatomegalie, testiculaire vergroting, verdrukking van de luchtwegen en bloedvaten in het mediastinum (T-ALL).

      • Manifestaties van het centrale zenuwstelsel: hoofdpijn, braken, verlammingsverschijnselen van zenuwen ten gevolge van meningeale verspreiding.

    Prognose: De behandeling van ALL bij kinderen behoort tot de succesverhalen van de oncologie. Met agressieve chemotherapie kan bij 95% complete remissie worden behaald en genezing bij 75% tot 85%. Desondanks is ALL nog steeds de hoofdoorzaak van overlijden veroorzaakt door kanker bij kinderen. Slechts 35% tot 40% van volwassenen wordt genezen. Negatieve prognose indicatoren zijn een leeftijd lager dan 2 jaar of adolescentie/volwassenheid, meer dan 100.000 blasten in een perifere bloed telling en aanwezigheid van het Philadelphia chromosoom (translocatie chromosoom 9 en 22, t(9;22)). Philadelphia chromosoom komt voor in 3% van de kinderen en 25% van de volwassenen.

    Positieve prognose indicatoren zijn een leeftijd tussen 2 en 10 jaar, een lage hoeveelheid witte bloedcellen, hyperploidie, trisomie van chromosomen 4, 7 en 10 en de aanwezigheid van t(12;21). Moleculaire detectie van residuen na behandeling leidt tot een slechtere uitkomst van de aandoening. Het Philadelphia chromosoom zorgt voor een fusie gen dat het eiwit BCR-ABL tyrosine kinase codeert in een zeer actieve vorm. Hoewel dit behandelt kan worden met BCR-ABL tyrosine inhibitoren, worden tumoren soms resistent vanwege mutaties.

    Chronische Lymfoïde Leukemie (CLL)

    • Pathogenese: Chronische Lymfoïde Leukemie (CLL) is de meest voorkomende leukemie van volwassenen in de Westerse wereld. De mediaan van de leeftijd waarop diagnose plaatsvindt is 60 jaar en de man:vrouw ratio ligt op 2:1. CLL komt veel minder vaak voor in Aziatische landen. Chromosomale translocaties liggen zelden ten grondslag aan CLL. Verschillende deleties en chromosomale regio’s zijn wel geassocieerd met de aandoening. De groei van CLL cellen is grotendeels begrenst tot de proliferation centers (zie verderop).

    • Histologie: Lymfeknopen bevatten infiltraten van voornamelijk kleine lymfocyten en grotere geactiveerde lymfocyten. Deze laatsten kunnen proliferation centers vormen die pathognomisch zijn voor CLL. Het bloed bevat veel ronde lymfocyten met gecondenseerd chromatine en weinig cytoplasma. In een bloed uitstrijkje gaan deze cellen vaak kapot, wat leidt tot smudge cells. Tumorcellen brengen CD19 en CD20 tot expressie (pan B-cel markers) en CD23 en CD5.

    • Klinisch verloop: Patiënten zijn vaak asymptomatisch bij diagnose. Symptomen zijn niet specifiek en bevatten moeheid, gewichtsverlies en anorexie. Gegeneraliseerde lymfadenopathie en hepato-splenomegalie zijn aanwezig in 50% tot 60% van symptomatische patiënten. Het leukocyten aantal is sterk variabel, van leukopenie tot sterke leukocytose. CLL verstoort de normale immuunfunctie door onbekende mechanismen.

    Hypogammaglobulinemie komt vaak voor en 10 tot 15% van de patiënten ontwikkelt hemolytische anemie of trombocytopenie. De prognose is sterk variabel en is afhankelijk van de klinische stadiering. De mediaan van de overlevingstijd bedraagt 4 tot 6 jaar, met meer dan 10 jaar voor individuen met een kleine tumor load. Lichte chemotherapie ter bestrijding van symptomen, monoclonale antilichamen en beenmergtransplantatie zijn therapeutische opties.

    CLL heeft de neiging te transformeren tot meer agressieve tumoren. Dit heeft invloed op de overleving van patiënten. Waarschijnlijk liggen mutaties hieraan ten grondslag. Overlevingskansen verminderen in deze gevallen tot minder dan een jaar.

    Folliculair lymfoom

    • Pathogenese: Het folliculair lymfoom is de meest voorkomende indolente (slapende) vorm van NHL in de Verenigde Staten, maar komt minder voor in Europa. Het presenteert zich meestal in de leeftijd tussen 30-55 jaar. De tumor ontstaat waarschijnlijk vanuit germinal center B cellen en is sterk geassocieerd met chromosomale translocaties. In 90% van de folliculaire lymfomen komt een translocatie van chromosoom 14 en 18 voor, dat leidt tot overexpressie van BCL2. Dit molecuul gaat apoptose tegen, waardoor cellen blijven overleven in plaats van afsterven over tijd.

    • Histologie: In aangetaste lymfeknopen komen 2 belangrijke celtypen voor: 1) centrocyten: kleine cellen met irregulaire nucleaire contouren 2) centroblasten: grotere cellen met open chromatine, meerdere nucleoli en kleine hoeveelheden cytoplasma. Lymfocytose in perifeer bloed komt bij 10% van de patiënten voor, betrokkenheid van beenmerg in 85% van de patiënten. BCL2 komt tot expressie in 90% van de gevallen, in tegenstelling tot normale folliculaire center B-cellen, waar dit niet tot expressie wordt gebracht.

    • Klinisch verloop: Folliculair lymfoom presenteert zich meestal met pijnloze, gegeneraliseerde lymfadenopathie. Aantasting van extranodale plekken is zeldzaam. Er is geen behandeling voor deze aandoening die effectief is en de overleving ligt tussen 7 en 9 jaar, omdat het een slapende ziekte is. Transformatie tot agressievere tumoren vindt plaats in 30 tot 50% van de folliculaire lymfomen. Overleving vermindert vervolgens tot 1 jaar.

    Diffuus groot B-cel lymfoom

    • Pathogenese: Het diffuus groot B-cel lymfoom is de meest voorkomende vorm van NHL. De mediaan van de leeftijd van presentatie ligt rond de 60 jaar, maar de aandoening kan ook voorkomen bij kinderen en volwassenen. De oorzaak van deze aandoening is heterogeen. Mutaties van genen die betrokken zijn bij de formatie van germinal centers lijken een rol te spelen. 10 tot 20% van de tumoren zijn geassocieerd met translocatie van chromosomen 14 en 18. Sommige subtypen van diffuus groot B-cel lymfoom hebben een relatie met oncogene herpesvirussen, zoals EBV en Kaposi’s sarcoom (HHV-8).

    • Histologie: Karakteristieke bevindingen zijn grote cellen (4 tot 5 keer de diameter van een kleine lymfocyt) en een diffuus patroon van groei. Cellen hebben een grote nucleus, open chromatine en prominente nucleoli. Klinisch verloop: Deze aandoening presenteert zich meestal met een snel groeiende massa op een nodale of extranodale plek. Het kan overal in het lichaam voorkomen. De ring van Waldeyer (orofaryngeaal lymfeweefsel dat ook de amandelen bevat) is vaak aangedaan, evenals lever en milt. Extranodale plekken zijn het gastro-intestinale systeem, huid, bot, hersenen en andere weefsels. Een leukemisch beeld ontstaat zelden. Deze tumoren zijn agressief en zijn snel fataal zonder behandeling. Met intensieve chemotherapie kan complete remissie worden bewerkstelligd bij 60 tot 80% van de patiënten en 40 tot 50% geneest.

    Chronische Myeloïde Leukemie (CML)

    • Pathogenese: Chronische Myeloïde Leukemie (CML) wordt onderscheiden van andere myeloproliferatieve aandoeningen door de aanwezigheid van het BCR-ABL fusiegen, wat bestaat uit een deel van het BCR gen op chromosoom 22 en een deel van het ABL gen op chromosoom 9. In meer dan 90% van de patiënten ontstaat dit door een translocatie van chromosoom 9 en 22, het Philadelphia chromosoom. Het eiwit BCR-ABL wordt hierdoor gevormd en heeft een sterk actieve tyrosine kinase functie, waardoor proliferatie en overleving van beenmerg progenitor-cellen sterk gestimuleerd wordt. Het gevolg is een toename van mature cellen in het perifere bloed, voornamelijk granulocyten en bloedplaatjes.

    • Histologie: Het beenmerg is hypercellulair met grote aantallen granulocyt precursors. Ook megakaryocyten (voorlopers van bloedplaatjes) zijn toegenomen in aantal. Het bloed toont een leukocytose met vaak meer dan 100.000 cellen/mm3, dit zijn grotendeels (voorlopers van) granulocyten en bloedplaatjes. Splenomegalie en soms milde hepatomegalie en lymfadenopathie is ook aanwezig.

    • Klinisch verloop: CML komt voornamelijk bij volwassen voor, maar kan ook voorkomen bij kinderen en adolescenten. De piek van incidentie ligt rond de 50-60 jaar. De opkomst van de aandoening is subtiel, met milde anemie, moeheid, zwakte, gewichtsverlies en anorexie. Soms is het eerste symptoom splenomegalie of een miltinfarct, dat stekende pijn in het linker bovenkwadrant kan geven. CML kan worden gediagnosticeerd door het BCR-ABL gen aan te tonen. De mediaan van de overlevingstijd ligt rond de 3 jaar, zelfs zonder behandeling. Hierna komt 50% van de patiënten in een versnelde fase, met toename in anemie en trombocytopenie. Dit leidt binnen 6 tot 12 maanden tot een blastencrisis, met een beeld van acute leukemie. CML kan zowel tot AML (70% van de crises) als tot ALL (30% van de crises) ontwikkelen.

    Behandeling van CML gebeurt met imatinib, een BCR-ABL inhibitor. Dit medicijn vermindert het aantal BCR-ABL positieve cellen, maar pakt de stamcel waar CML uit ontstaat niet aan. Imatinib zorgt wel dat het aantal cellen in het bloed onder controle blijft en vermindert het risico op een blastencrisis. Voor jonge patiënten is een allogene beenmerg transplantatie genezend in 75% van de gevallen.

    Myeloïde Neoplasma

    De overeenkomst van deze heterogene groep van neoplasma is dat ze allen ontstaan uit hematopoietische progenitor cellen. Ze tasten vooral het beenmerg aan en in mindere mate milt, lever en lymfeknopen. Deze groep is in de te delen in 3 categorien:

    • Acute Myeloïde Leukemie: ophoping van immature myeloid cellen onderdrukt hematopoiese

    • Myelodysplastisch syndroom: ineffectieve hematopoiese leidt tot cytopenie

    • Myeloproliferatieve aandoeningen: toegenomen productie van bloedcellen

    Genetische defecten die de normale hematopoiese verstoren en feedback-mechanismen van cytokinen en groeifactoren beïnvloeden liggen ten grondslag aan de pathogenese van deze aandoeningen. Zowel myelodysplastisch syndroom en myeloproliferatieve aandeoningen kunnen zich ontwikkelen tot een agressieve acute myeloïde leukemie.

    Acute Myeloïde Leukemie

    • Pathogenese: Acute Myeloïde Leukemie (AML) is een tumor van hematopoietische progenitor-cellen die ontstaat vanuit verworven oncogene mutaties. Deze mutaties beïnvloeden de differentiatie van deze progenitor-cellen wat leidt tot ophoping van immature myeloïde blasten in het beenmerg. Het gevolg is beenmergfalen, anemie, trombocytopenie en neutropenie. AML kan op elke leeftijd ontstaan, maar heeft een piek in incidentie na 60 jaar. Classificatie: AML wordt geclassificeerd in 4 categorieën:

      • AML met specifieke onderliggende genetische afwijkingen: relatief goede prognose

      • AML met myelodysplastische (MDS) kenmerken: relatief slechte prognose

      • Therapie-gerelateerde AML: relatief slechte prognose

      • Overige soorten van AML: gemiddelde prognose

    Deze classificatie is ontworpen door de World Health Organization (WHO). Een oudere classificatie die nog steeds gebruikt wordt is de FAB classificatie, waar AML op basis van differentiatie van blasten wordt ingedeeld.

    • Histologie: Diagnose van AML is gebaseerd op de aanwezigheid van tenminste 20% myeloïde blasten in het beenmerg. Myeloblasten bezitten delicaat nucleair chromatine, 2 tot 4 nucleoli en volumineus cytoplasma. Het aantal leukemische cellen in het bloed is sterk variabel, van meer dan 100.000 blasten tot minder dan 10.000 per mm3. Soms zijn blasten in het geheel niet aanwezig. Omdat het moeilijk is myeloblasten en lymfoblasten te onderscheiden worden vaak kleuringen uitgevoerd. Cytogene analyse heeft een centrale rol in de classificatie van AML. In jonge patiënten zijn vaak chromosomale translocaties aantoonbaar, terwijl MDS of therapie-gerelateerde AML vaak gepaard gaat met deleties of een monosomie. Veel van de genetische afwijkingen verstoren genen die transcriptiefactoren coderen die noodzakelijk zijn voor normale myeloïde differentiatie. Er is meer en meer bewijs dat gemuteerde tyrosine kinases samenwerken met defecten in transcriptiefactoren om zo AML te doen ontstaan.

    • Klinisch verloop: Binnen weken tot maanden na de eerste presentatie van symptomen ontstaan klachten gerelateerd aan anemie, neutropenie en trombocytopenie. Dit zijn bijvoorbeeld moeheid, koorts en spontane mucosale en cutane bloedingen, ten gevolge van trombocytopenie. Dit beeld lijkt erg op ALL. Infecties van opportunistische pathogenen zoals Pseudomonas en commensalen komen vaak voor, evenals bloedingen op verschillende plekken in het lichaam. Betrokkenheid van het centrale zenuwstelsel komt minder vaak voor dan bij ALL.

    • Prognose: AML is lastig om te behandelen. 60% van de patiënten bereikt complete remissie, maar slechts 15% tot 30% blijft ziektevrij voor 5 jaar. Zoals eerder genoemd is classificatie bepalend voor de prognose. Chemotherapie of beenmergtransplantatie is de therapie van keuze.

    Pathologie: Wat zijn mogelijke aandoeningen van rode bloedcellen en bloedziekten? - Chapter 14

    Pathologie: Wat zijn mogelijke aandoeningen van rode bloedcellen en bloedziekten? - Chapter 14

    Hemorragische diathese

    Hemorragische diathese (verhoogde bloedingsneiging) kan ontstaan ten gevolge van:

    1. Verhoogde fragiliteit van bloedvaten

    2. Bloedplaatjes deficiëntie of dysfunctie

    3. Verstoring van de coagulatie, ofwel bloedstolling

    Er zijn verschillende laboratoriumtesten:

    • Protrombine tijd (PT): beoordeelt de extrinsieke stollingscascade, waarbij de stolling van plasma wordt gemeten in seconden na toevoeging van exogeen tromboplastine. Verlengde PT duidt op deficiëntie van factor V, VII, X, protrombine of fibrinogeen.

    • Partiele tromboplastine tijd (PTT): beoordeelt de intrinsieke stollingscascade, waarbij de stolling van plasma wordt gemeten in seconden na toevoeging van glaspoeder, kaoline, cefaline en Ca2+. Een verlengde PTT duidt op deficiëntie van factor V, VIII, IX, X, XI, XII, protrombine of fibrinogeen.

    • Plaatjes telling: de hoeveelheid bloedplaatjes in het bloed kan een indicatie geven voor bepaalde aandoeningen. De normaalwaarde is 150 – 300 x 103 plaatjes/µL. Trombocytopenie duidt op een samenklontering van bloedplaatjes en een trombocytose duidt op een myeloproliferatieve aandoening.

    • Test van plaatjesfunctie: Op dit moment is er geen test die een adequate toetsing van de functies van bloedplaatjes kan uitvoeren. Experimentele testen zijn in ontwikkeling. Meer gespecialiseerde testen kunnen de hoeveelheid fibrinogeen, fibrine eindproducten en specifieke stollingsfactoren meten. Een plaatjesaggregatietest en bloedingstijd test kunnen iets bepalen over de functie van von Willebrand factor.

    Bloedingsziekten, veroorzaakt door vaatwandafwijkingen

    Deze groep aandoeningen wordt ook wel non-trombocytopenische purpura’s genoemd. Ze komen vaak voor, maar geven meestal kleine bloedingen in de huid of slijmvliezen, waaronder petechiën en purpura. Soms ontstaan echter grotere bloedingen. PT, PTT, plaatjestelling en andere bloedtesten zijn meestal normaal.

    Deze klinische manifestaties kunnen optreden door infecties (meningococcus, endocarditis), medicijnen en genetische aandoeningen. Bij scheurbuik en Ehlers-Danlos syndroom is er aantasting van collageen in bloedvaten, wat tot microvasculaire bloedingen kan leiden. Henoch-Schönlein purpura is een systemische aandoening, die wordt veroorzaakt door deposities van antilichamen in bloedvaten, wat leidt tot purpura uitslag, koliekpijn in de darmen, polyartralgie en acute glomerulonephritis. Hereditaire hemorragische telangiectasia (Weber-Osler-Rendu syndroom) is een aandoening die wordt gekarakteriseerd door uitgezette en kronkelige bloedvaten met dunne vaatwanden en sereuze bloedingen. Bij perivasculaire amyloïdose leidt een complicatie van lichte keten amyloïdose tot verzwakte vaatwanden, leidend tot petechiën.

    Trombocytopenie

    Vermindering in plaatjesaantal kan bloedingen veroorzaken in de huid, de gastro-intestinale en urogenitale slijmvliezen en zelden intracraniaal (zeer ernstig). Trombocytopenie wordt gedefinieerd als minder dan 100 x 103 plaatjes/µL, bloedingen treden op bij minder dan 20 x103 plaatjes/µL. Oorzaken van trombocytopenie zijn:

    • Verminderde productie in het beenmerg of aantasting van megakaryocyten: ten gevolge van leukemie, alcohol, medicijnen, aplastische anemie en HIV.

    • Verminderde bloedplaatjes overleving: die immuun-gemedieerd kan zijn, waarbij antilichamen plaatjes afbreken (auto- of alloimmuniteit), of die niet immuun-gemedieerd is, zoals in het geval van diffuse intravasale stolling, trombotische microangiopathieën en mechanische schade.

    • Sekwestratie: Verhoogde sekwestratie (vastlopen van plaatjes) vindt plaats in de milt bij splenomegalie.

    • Verdunning: zoals voorkomt bij bloedtransfusie, waarbij volume en rode bloedcellen worden bijgevuld, maar bloedplaatjes relatief in aantal dalen.

    Chronische Immuun Trombocytopenische Purpura (ITP)

    Chronische ITP wordt veroorzaakt door antilichamen die bloedplaatjes afbreken. Het kan primair (idiopathisch) of secundair door een andere aandoening ontstaan, zoals SLE, HIV, B-cel lymfomen of Chronische Lymfatische Leukemie. Het grootste gedeelte van de patiënten vertoont een IgG reactie tegen bloedplaatjes. Bloedplaatjes worden vervolgens gefagocyteerd in de milt. Histologische kenmerken bij ITP zijn aspecifiek. Bij ITP is de milt van normale grootte, is trombocytopenie aanwezig en zijn de PT en PTT normaal. Het beenmerg toont een lichte verhoging in megakaryocyten, wat dient om het tekort aan plaatjes te compenseren. Het perifere bloed vertoont megatrombocyten, wat op versnelde trombopoïese duidt.

    Chronische ITP treedt vooral op bij vrouwen onder de 40 jaar. Petechiën ontstaan in de huid en kunnen zich ontwikkelen tot ecchymosen. De ziekte kan zich presenteren met melena, hematurie of excessieve menstruele afscheiding. Subarachnoïdale en intracerebrale bloedingen kunnen fataal zijn, maar zijn zeldzaam. Splenectomie en het voorschijven van glucocorticoïden is de aangewezen behandeling hiervoor. Immunomodulatoire medicijnen, als rituximab, kunnen als aanvullende of alternatieve therapie wordt toegepast.

    Acute Immuun Trombocytopenische Purpura (ITP)

    Acute ITP heeft een ander verloop dan chronische ITP. Acute ITP treedt vooral op bij kinderen, bij wie symptomen ongeveer twee weken na een virale infectie ontstaan. Acute ITP verdwijnt vanzelf binnen zes maanden, maar bij 20% van de kinderen ontwikkelt het zich tot een chronische vorm.

    Medicijn-geïnduceerde Trombocytopenie

    Medicijnen kunnen direct trombocyten vernietigen of dit secundair doen via een immunologische reactie. Dit komt vooral voor bij quinine, quinidine en vancomycine. Heparine-geïnduceerde trombocytopenie (HIT) treedt op bij 5% van de patiënten die heparine gebruiken en bevat twee typen. Type 1 trombocytopenie heeft weinig klinische significantie en heeft waarschijnlijk te maken met een direct aggregratie-effect van heparine op bloedplaatjes. Type 2 trombocytopenie ontstaat door antilichamen die binden aan complexen van heparine en bloedplaatjes-factor 4. Dit kan tot levensbedreigende veneuze en arteriële trombose leiden. Het risico op deze reactie wordt verminderd door het gebruik van laag moleculair gewicht heparine (LMGH).

    HIV-geassocieerde trombocytopenie

    Trombocytopenie is een van de meest voorkomende hematologische manifestaties van een HIV-infectie. Infectie van megakaryocyten wat leidt tot apoptose, ontwikkeling van auto-antilichamen in geïnfecteerde B-cellen en depositie van immuuncomplexen op bloedplaatjes dragen hieraan bij.

    Trombotische microangiopathieën

    Trombocytopenische purpura (TTP) en hemolytische-uremisch syndroom (HUS) leiden beiden tot excessieve bloedplaatjesactivatie, waardoor er trombusvorming in de kleinste bloedvaten optreedt met ernstige orgaandysfunctie. HUS wordt onderscheiden van TTP door nierfalen, de afwezigheid van neurologische symptomen en de hoge incidentie in kinderen. De PT en PTT metingen zijn normaal. Trombotische microangiopathieën zijn over het algemeen curatief behandelbaar. Behandeling kan bestaan uit therapeutische autoantilichamen en immunosuppressiva.

    Bloedingsziekten die ontstaan ten gevolge van verminderde plaatjesfunctie

    Defecten in plaatjesfunctie kunnen verworven zijn of overgeërfd. Overgeërfde aandoeningen ontstaan ten gevolge van:

    • Adhesiedefecten: Bernard-Soulier syndroom

    • Aggregatiedefecten: Glanzmann trombasthenie

    • Defecten in de secretie van plaatjes: verschillende defecten in stollingsmediatoren

    Verworven defecten in plaatjesfunctie, kunnen optreden door uremie en inname van NSAIDs. NSAIDs (bv. aspirine) inhiberen COX enzymen die tromboxaan A2 en prostaglandines aanmaken, die vervolgens de functie van bloedplaatjes ondersteunen. Uremie kan via een complexe pathogenese tot plaatjes dysfunctie leiden.

    Verhoogde bloedingsneiging ten gevolge van stollingsfactoren

    Bloedingen die veroorzaakt worden door tekorten aan stollingsfactoren presenteren zich meestal als grote post-traumatische ecchymosen en hematomen, of als verlengd bloeden na een wond of operatie. Dit gebeurt meestal in het gastro-intestinale of urogenitale stelsel of in gewicht-dragende gewrichten. Erfelijke deficiënties betreffen meestal een enkele stollingsfactor. Verworven deficiënties betreffen meestal meerdere stollingsfactoren en kunnen te maken hebben met verminderde synthese of een verminderde halfwaardetijd. Voorbeelden zijn vitamine K deficiëntie en DIC waar deficiëntie van verschillende stollingsfactoren optreedt.

    De ziekte van Von Willebrand

    Von Willebrand factor (vWF) stabiliseert factor VIII waardoor de halfwaardetijd wordt verlengd. Daarnaast bindt vWF andere stoffen om adhesie van bloedplaatjes aan de subendotheliale matrix te bewerkstelligen. De functie van vWF bij een hoge shear stress is het binden van een GpIIb/IIIa integrine. vWF wordt aangemaakt in endotheel en megakaryocyten, factor VIII in de endothele en Kupffer-cellen van de lever en nieren. De ziekte van Von Willebrand is de meest voorkomende overgeërfde bloedingsziekte bij mensen. De hoeveelheid vWF is verminderd, dat een verminderde functie van factor VIII tot gevolg heeft. Ook zullen abnormaliteiten in plaatjes adhesie en de formatie van stollingen optreden. De meeste patiënten hebben een milde bloedingsneiging, met bloedingen uit slijmvliezen (neusbloeden), langere bloedingstijd van wonden en verlengde bloeding bij menstruatie. Het is een autosomaal dominante aandoening die voorkomt in verschillende typen. Type 1 en type 3 worden gekarakteriseerd door een verminderde hoeveelheid vWF. Type 2 wordt gekarakteriseerd door kwalitatieve defecten in vWF. Desmopressine dat afgifte van vWF stimuleert of toediening van factor VIII en vWF worden als therapie gebruikt.

    Hemofilie A

    Hemofilie A is een X-gebonden recessieve aandoening. Mutaties in factor VIII leiden tot een verstoorde bloedingscascade, met levensbedreigende bloedingen tot gevolg. 30% van de patiënten hebben geen familiegeschiedenis (idiopathisch), maar ontwikkelen de aandoening door spontane mutaties. De hoeveelheid functioneel factor VIII bepaalt de ernst van de aandoening, die uiteen loopt van mild tot zeer ernstig. In alle gevallen is er een neiging tot het oplopen van blauwe plekken en grote bloedingen (in gewrichten) na trauma of operaties. Patiënten met Hemofilie A hebben meestal een verlengde PTT en een normale PT. Factor VIII specifieke assays zijn nodig voor diagnose. Hemofilie A wordt behandeld met infusies van recombinant factor VIII. 15% van de patiënten heeft antilichamen tegen FVIII en zal dit afstoten.

    Hemofilie B (Christmas disease, factor IX deficiëntie)

    Hemofilie B betreft een mutatie in factor IX die leidt tot een aandoening die niet te onderscheiden is van Hemofilie A. Het is net als hemofilie A een X-gebonden recessieve aandoening, met een breed spectrum in klinische ernst. De PTT is verlengd en behandeling gebeurt door toediening van recombinant factor IX.

    Gedissemineerde intravasculaire coagulatie (DIC)

    Gedissemineerde intravasculaire coagulatie (DIC) is een acute, subacute of chronische aandoening waarbij excessieve activatie van de bloedstolling leidt tot formatie van trombi in de kleinste vaten. DIC ontstaat als secundaire complicatie bij verschillende aandoeningen. Het kan zich presenteren met bloedingen ten gevolge van het tekort aan bloedplaatjes of met hypoxie ten gevolge van de trombi.

    Het mechanisme van DIC bestaat uit de afgifte van tissue factor of tromboplastische substanties in de circulatie en de wijdverspreide schade aan endotheliale cellen. Tromboplastische substanties komen vrij uit de placenta bij obstetrische complicaties, leukemiecellen of adenocarcinomen. Endotheelschade kan op verschillende manieren DIC veroorzaken. Zo kan necrose aan endotheel het subendotheliale weefsel blootstellen aan bloed en zo stolling initiëren. Ook TNF, dat vrijkomt bij sepsis, verhoogt de expressie van verschillende eiwitten die stolling bevorderen. Daarnaast kunnen antigen-antilichaam complexen, extreme temperaturen, micro-organismen, hypoxie, acidose en shock ook wijdverspreide endotheliale schade veroorzaken. DIC treedt meestal op bij obstetrische complicaties, maligne neoplasma, sepsis, brandwonden en ernstig trauma.

    De gevolgen van DIC zijn tweevoudig. Eerst is er wijdverspreide depositie van fibrine in de microcirculatie, wat leidt tot ischemie en microangiopathische hemolytische anemie. Ten tweede zorgt de consumptie van bloedplaatjes en de activatie van plasmine tot een hemorragische diathese (verhoogde bloedingsneiging). Schade in de microcirculatie kan leiden tot symptomen van het betrokken orgaan. Trombi in endocriene organen kunnen opvallende syndromen veroorzaken, zoals het Waterhouse-Friderichsen syndroom en Sheehan postpartum pituitary necrosis. Het optreden kan heel snel en dodelijk kan, zoals bij endotoxische shock of een amnionvocht embolie, of langzaam en chronisch, zoals in het geval van metastasen van adenocarcinomen of een dode foetus. 50% van de patiënten heeft obstetrische complicaties, 33% heeft metastasen bij een maligniteit.

    Acute DIC, zoals bij obstetrische complicaties of uitgebreid trauma, presenteert zich voornamelijk met een verhoogde bloedingsneiging, terwijl chronische DIC, zoals bij kankerpatiënten, zich presenteert met trombotische complicaties. Ook kan een breed scala aan systemische symptomen, zoals dyspneu, nierfalen of convulsies voorkomen. De diagnose wordt gesteld op basis van laboratoriumtesten, zoals fibrinogeen waarden, bloedplaatjes, PT, PTT en fibrine afbraakproducten. Behandeling richt zich op de onderliggende aandoening.

    Pathologie: Wat zijn mogelijke aandoeningen van de borst? - Chapter 23

    Pathologie: Wat zijn mogelijke aandoeningen van de borst? - Chapter 23

    Anatomie van de borst

    De mamma (borst) is de klier die zich bij vrouwen beiderzijds bevindt bovenop de m. pectoralis major en minor. De functie van de mamma is het produceren en afgeven van melk na de geboorte van een kind. De borst wordt gevormd door interlobulair stroma met daarin zes tot tien grote ductussystemen, die eindigen in terminale ductuli bij de lobuli (borstkliertjes). Het plaveiselcelepitheel van de huid gaat via de doorgang van de tepel over in dubbellagig kubisch epitheel van de ductus. Dit dubbellaagse epitheel vormt de wand van de grote ductuli en vervolgens ook van de kleinere acini, die een lobuli vormen. De wand van de ductuli en lobuli wordt gevormd door contractiele myo-epitheelcellen, die een functie hebben bij de ejectie als er sprake is van lactatie (melkproductie). Binnen deze laag bevinden zich luminale epitheelcellen, die in de lobuli melk kunnen produceren. De beide celtypen worden gevormd door stamcellen in de terminale ductuli.

    De borst bestaat uit twee types borststroma: interlobulair en intralobulair stroma (steunweefsel). Interlobulair stroma, waar de ductuli en lobuli in liggen, bestaat uit fibreus bind- en vetweefsel. Intralobulair stroma omgeeft de acini en lobuli en bestaat uit hormoongevoelige fibroblasten en uit lymfocyten.

    Ontwikkeling

    Voor de puberteit zijn er weinig lobuli aanwezig, tijdens de puberteit worden dit er meer. Na de puberteit hangen de histologische eigenschappen onder andere af van de menstruele cyclus. Oestrogeen- en progesteronspiegels hebben invloed op de mamma. Na de ovulatie komt er celproliferatie: meer acini per lobulus en een toename van het intralobulaire stroma. Na de menstruatie is er weer afname van acini en is er vermindering van intralobulair stroma.

    Alleen bij zwangerschap is er volledige borstmaturatie: er komen meer en grotere lobuli. Hierdoor bestaat de borst uiteindelijk vooral uit lobuli met relatief weinig stroma. Onmiddellijk na de geboorte van een baby gaan de luminale cellen colostrum (eiwitrijke vloeistof) produceren en binnen 10 dagen melk (bevat meer vet en calorieën). Als de lactatie stopt, vindt er apoptose van de epitheelcellen, lobulusregressie en atrofie plaats. Hierdoor vermindert de grote van de borsten. De regressie van de lobuli is echter onvolledig. Ver voor de menopauze begint de afname van lobuli en intralobulair stroma en treden er veranderingen op in het interlobulair stroma (fibreus stroma wordt vervangen door vet). Lobulaire atrofie is vrijwel compleet bij bejaarde vrouwen.

    Afwijkingen

    Klinische presentatie

    De meeste vrouwen presenteren zich met pijn, een palpabele zwelling of tepelvloeien. Pijn kan cyclisch of niet cyclisch zijn en diffuus of lokaal. Diffuse cyclische zwelling heeft met hormoonspiegels te maken en heeft dus geen pathologische onderliggende aandoening. Niet cyclische pijn is meestal lokaal en kan het gevolg zijn van onder andere verwonding, infectie of geruptureerde cysten, maar vaak kan geen specifieke laesie worden aangetoond. Ook 10% van de borstkankers geeft pijn.

    Een palpabele massa is voelbaar vanaf een grootte van 2 cm en kan veroorzaakt worden door carcinomen, fibroadenomen en cysten. Onderscheid met de normale hobbeligheid van de mamma is erg belangrijk.

    Tepelvloeien is vooral een reden tot ongerustheid als het unilateraal en spontaan is. Er wordt onderscheid gemaakt tussen melkachtige vloeistof en bloederige of sereuze uitvloei. Galacorrhea, de melkachtige uitvloei, is niet geassocieerd met maligniteit en komt onder andere voor bij verhoogde prolactinespiegels, hypothyroïdie en als bijwerking van bepaalde medicijnen waaronder orale anticonceptie. Bloederige of sereuze uitvloei wordt vaak door benigne aandoeningen veroorzaakt, maar kan soms een teken zijn van maligniteit.

    Mammografie

    Densiteiten op een mammografie wijzen vaak op invasieve carcinomen, fibroadenomen of cystes. Deze aandoeningen hebben een hogere densiteit dan normaal borstweefsel. Hiermee kunnen afwijkingen vanaf 1,1 cm worden gevonden (kleiner dan bij palpatie).

    Calcificaties worden afgezet op secretie, necrose of hyaline stroma. Goedaardige verkalkingen worden geassocieerd met apocrine cyste, hyaline fibroadenomen en scerotische adenose. Calcificaties op een mammografie die klein, irregulair, talrijk en in clusters voorkomen, zijn geassocieerd met maligniteiten. Een ductaal carcinoma in situ wordt vaak ook gezien met calcificaties, vaak zijn de kalkafzettingen lineair vertakt.

    In 10% van de gevallen wordt een carcinoom gemist op mammografie. De sensitiviteit van een mammografie neemt toe naarmate vrouwen ouder worden, doordat fibreus radiodens weefsel wordt vervangen door vetweefsel. Het verschil is dan beter te zien tussen het carcinoom en omliggend weefsel. Bij jongere patiënten kan vaak niet goed een mammogram worden gemaakt, doordat het klierweefsel nog heel dens is. Daarom wordt hierbij vaker een echo gemaakt.

    Na beeldvormend onderzoek wordt verslaglegging gedaan volgens BI-RADS. De eindcatogoriën hiervan zijn:

    • Onvolledig onderzoek, er is meer onderzoek noodzakelijk

    • Normaal

    • Overduidelijk een benigne afwijking

    • Waarschijnlijk benigne

    • Licht verdacht voor maligne

    • Zeer verdacht voor maligne

    • Pathologisch bewezen maligniteit.

    Na de mammografie of echo is een punctie belangrijk voor de diagnostiek. Bij een hogere score dan BI-RADS 2 is er een indicatie voor een punctie. Er kan een cytologische of histologische punctie gedaan worden.

    Bij verdenking op metastasen moet hierna aanvullend onderzoek gedaan worden (thoraxfoto, leverecho, skeletscinigrafie). Bij verdachte resultaten kan dit worden aangevuld met een punctie.

    Ontwikkelingsstoornissen 

    • Overblijfselen van de melkgangen: dit kan zich uiten door de aanwezigheid van meerdere borsten en/of tepels in de melklijn.

    • Accessoir borstweefsel rond de oksel: ductuli lopen dan door tot in het subcutane weefsel van de oksel. Dit epitheel kan ook verandering ondergaan samenhangend met lactatie, maar er kan zich ook een carcinoom vormen. Mastectomie (het chirurgisch verwijderen van borstweefsel) van het accessoire borstweefsel verlaagt de kans op borstkanker.

    • Congenitale intrekking van de tepel: de tepel hoort tijdens de ontwikkeling naar buiten toe te treden, maar dit gebeurt hierbij niet. Vaak verdwijnt dit spontaan tijdens de zwangerschap. Het is belangrijk dit te onderscheiden van verworven tepelintrekking, wat kan duiden op kanker of inflammatie.

    Inflammatieziekten

    Inflammatieziekten zijn zeldzaam. Minder dan 1% van de vrouwen die klachten hebben aan de mammae hebben een inflammatieziekte. Ze presenteren zich over het algemeen met een rode, pijnlijke en gezwollen borst.

    • Acute mastitis: wordt vooral veroorzaakt door S. Aureus gedurende het geven van borstvoeding in verband met kleine scheurtjes in de tepel. De symptomen zijn een erythemateuze, pijnlijke borst en koorts. Histologisch kun je neutrofielen zien en soms necrotisch borstweefsel. Slechts 1 gangensysteem of sector van de borst is in het proces betrokken. Behandeling om te voorkomen dat de infectie zich door de hele borst verspreidt, geschiedt middels antibiotica en soms is bij abcessen chirurgische drainage noodzakelijk.

    • Periductale mastitis: de presentatie is met een pijnlijke erythemateuze massa onder de tepel. Er is geen verband met lactatie, wel met roken. Histologisch is er metaplasie van de plaveiselcellen van de tepelductuli tot gekeratiniseerd plaveiselepitheel. Als dat diep in een ductus gebeurt, kan keratine zich gaan ophopen, de ductus verwijdt dan en kan uiteindelijk ruptureren. Bij een ruptuur ontstaat een inflammatoire respons op het vrijgekomen keratine, dit leidt tot het klinische beeld. Meestal wordt de betrokken ductus chirurgisch verwijderd. Een secundaire bacteriële infectie wordt bestreden met antibiotica.

    • Ductus ectasie: voornamelijk vrouwen tussen de 40 en 60 met een slecht begrensde massa rond de tepel, witte tepelsecretie en soms retractie van de huid. Pijn en roodheid zijn bij deze aandoening zeldzaam. De slecht begrensbare massa kan verward worden met borstkanker. Histologisch is er dilatatie van de ductuli, secreet en een chronische granulamateuze inflammatoire reactie te zien.

    • Vetnecrose: presentatie met een pijnloze palpabele massa, huidverdikking of huidretractie, een densiteit op de mammografie of calcificaties. Ook hier kan verwarring ontstaan met een maligniteit. Onder de microscoop zie je in de acute fase vetnecrose, hemorrhage en neutrofielen. Dit gaat uiteindelijk met behulp van fibroblasten over in littekenweefsel. Vetnecrose treedt vaak op na een trauma of na chirurgie.

    • Lymfocytaire mastopathie: er zijn een of meerdere harde palpabele plekken, eventueel bilateraal. Op de mammografie is er een densiteit. Het afnemen van een biopt is moeilijk door de hardheid. Histologisch is er gecollageniseerd stroma om atrofische ductuli en lobuli te zien. Vaak is de basaalmembraan verdikt en is er een lymfocytair infiltraat om het epitheel heen. De ziekte komt vaak voor bij vrouwen met Diabetes Mellitus type 2 en een auto-immuunziekte van de schildklier. Hierdoor wordt gedacht dat er een auto-immuun oorzaak is voor lymfocytaire mastopathie. Klinisch is het belangrijk dat het wordt onderscheiden van een maligniteit.

    • Granulomateuze mastitis is een zeldzamere oorzaak van borstinflammatie en komt voor bij systemische granulomateuze ziekten of wordt veroorzaakt door mycobacteriën en fungi bij immuungecompromitteerden.

    Benigne laesies van het epitheel

    Vaak worden benigne afwijkingen in de borst per toeval gevonden, minder vaak zijn er daadwerkelijk palpabele afwijkingen. De laesies worden in drie groepen onderverdeeld, afhankelijk van het mogelijk risico dat zij geven op de ontwikkeling van borstkanker.

    • Niet-prolifererende (fibrocystische) borstveranderingen. Niet-prolifererende borstveranderingen geven geen verhoogd risico op borstkanker. Klinisch zijn deze afwijkingen van belang, omdat zij palpabele massa’s, mammografische densiteiten of calcificaties kunnen veroorzaken. Er moet hierbij dus onderscheidt worden gemaakt tussen de niet-prolifererende borstveranderingen en een mogelijk mammacarcinoom.

      • Cysten ontstaan uit gedilateerde en ontvouwde lobuli. Deze cystes zien er blauw/bruin uit en bevatten doorschijnende, troebele vloeistof. De cyste wordt omgeven door atrofisch epitheel, soms met kenmerken van metaplasie. Soms zijn er ook verkalkingen in de cyste aanwezig.

      • Fibrosis ontstaat nadat cystes ruptureren. De vloeistof komt dan terecht in het stroma. Daardoor ontstaat inflammatie en fibrose die leidt tot palpabele plekken in de borst.

      • Adenose is een toename van het aantal acini per lobulus. Dit gebeurt fysiologisch tijdens de zwangerschap (lactationele adenose). Bij niet-zwangere vrouwen kan dit lokaal voorkomen. De acini zijn vergroot. Vaak zijn er calcificaties in het lumen aanwezig.

    • Prolifererende borstveranderingen zonder atypie. Deze afwijkingen veroorzaken vaak geen palpabele zwellingen, maar worden vaak per toeval ontdekt als densiteit of calcificatie op een mammografie of bij toeval tijdens een biopt (hyperplasie). De afwijkingen kunnen geïsoleerd voorkomen, maar meestal is er meer dan een laesie aanwezig. Prolifererende borstveranderingen zonder atypie worden gekenmerkt door proliferatie van het ductale epitheel en/of stroma, zonder dat de cellen hierbij afwijkend zijn.

      • Epitheelhyperplasie: bij epitheelhyperplasie verandert de basaalmembraan van slechts een dubbele laag van myoepitheel en luminaalepitheel in meer dan twee cellagen. De hyperplasie veroorzaakt gedilateerde ducti met irregulaire lumen.

      • Scleroserende adenose: hierbij zijn er minimaal twee keer zoveel acini aanwezig als in een normale lobulus. De acini in het centrum zijn verdrukt, in de periferie juist verwijd. Vaak is er ook sprake van stomale fibrose waardoor de lobuli verder worden dichtgedrukt. In de lumen van de acini zijn veelal calcificaties aanwezig.

      • Papilomen: fibrovasculaire uitstulpingen, die bestaan uit bindweefsel omgeven door luminale en myoepitheliale cellen. Vaak is er ook epitheliale hyperplasie en apocrine metaplasie aanwezig. Als papilomen ruptureren, kan er een bloederige tepeluitvloei zijn.

      • Complexe scleroserende laesie: een combinatie van scleroserende adenose, papilomen en epitheelhyperplasie. Er ontstaan stervormige laesies (radiale littekens). Deze laesies kunnen lijken op irregulaire invasieve carcinomen.

    • Prolifererende borstveranderingen met atypische hyperplasie. Deze lijken het meest op carcinomen, maar missen een aantal criteria. Er kan sprake zijn van:

      • atypische ductus hyperplasie: een op ductaal carcinoma in situ lijkende monomorfe proliferatie van cellen. Vaak zijn er calcificaties aanwezig. De cellen zijn echter niet in staat de gehele ductale ruimte op te vullen.

      • atypische lobulaire hyperplasie: hierbij zijn er dezelfde celproliferaties als bij een luminaal carcinoom in situ aanwezig, maar deze nemen niet meer dan de helft van de ruimte in van de acini.

    Bij prolifererende borstveranderingen is er een klein verhoogd risico op borstkanker, er zijn echter geen cytologische en architecturale aanwijzingen voor een carcinoma in situ. Dit verhoogde risico heeft invloed op beide borsten, dus niet alleen op de aangedane borst waarin zich de laesie bevindt.

    Mammacarcinoom

    Borstkanker behoort tot een van de meest voorkomende kanker.De incidentie van mammatumoren in Nederland was in 2006 12.416 nieuwe patiënten per jaar. Iedere vrouw heeft 11% kans om tijdens haar leven borstkanker te ontwikkelen. De mortaliteit van borstkanker is de laatste jaren afgenomen door verbeterde diagnostiek en behandeling.

    De meeste mammacarcinomen komen voor tussen de 50-75 jaar. Deze groep vrouwen wordt een keer in de twee jaar gescreend met behulp van een mammografie (BOB, bevolkingsonderzoek op borstkanker). Hierdoor kan borstkanker in een vroeg stadium worden opgezocht. Tegenwoordig is het ook mogelijk om met moleculair genetisch onderzoek vrouwen met een verhoogd genetisch risico te identificeren. Vrouwen met een genmutatie, die een verhoogde kans op een mammacarcinoom geeft, komen in aanmerking voor een MRI screening. Door de nieuwe behandelingsmogelijkheden van systemische behandeling, radiotherapie, chirurgie en combinaties hiervan, is er een grotere kans op genezing.

    Maligne afwijkingen worden gestadiëerd via het TNM-systeem. Door p-TNM worden de bevindingen van de patholoog weergeven. Patiënten die curatief worden behandeld hebben meestal een tumor in de stadia Tis-T3, N0-N1, M0.

    Risicofactoren

    • Geslacht: dit is de belangrijkste risicofactor. In 99% van de gevallen gaat het om een vrouw.

    • De leeftijd: de incidentie van borstkanker stijgt met leeftijd, met een piek rond de 75-80 jaar. Vervolgens kan er een kleine afname worden gezien.

    • De leeftijd bij de menarche: een vroege menarche (<12 jaar) geeft een hoger risico op borstkanker dan een late.

    • De menopauze: een late menopauze (>55 jaar) is ook een verhoogd risicofactor.

    • De leeftijd bij het eerste kind: het krijgen van het eerste kind op oudere leeftijd (>30) geeft een hoger risico. De hypothese hierachter is dat een zwangerschap resulteert in een terminale differentiatie van de melkproducerende luminale cellen. Hierdoor wordt de potentiele pool van tumorcel precursors verkleind.

    • Een positieve familieanamnese: eerstegraads familieleden met borstkanker geven ook meer risico op borstkanker. Dit risico wordt nog meer verhoogd als het familielid op jonge leeftijd een mammacarcinoom had.

    • Voorgeschiedenis: een eerdere atypische hyperplasie geeft een kleine risicoverhoging.

    • Ras: in Amerika komt het meeste borstkanker voor onder blanke vrouwen. Daarentegen is er bij Afro-Amerikaanse vrouwen en Hispanics een hogere mortaliteitsgraad. Dit heeft met biologische factoren, zoals bepaalde mutaties te maken, maar ook met sociale factoren als toegang tot zorg.

    • Blootstelling aan oestrogenen: dit verhoogt ook het risico op borstkanker. Het gaat dan om hormoontherapie bij postmenopauzale vrouwen en niet om orale anticonceptiva. Deze laatste geven overigens wel een verlaagd risico op endometrium- en ovariumcarcinomen.

    • Denser borstweefsel, blootstelling aan carcinogene straling, een carcinoom in de contralaterale borst of een endometriumcarcinoom verhogen ook het risico. Dit is vooral het geval wanneer er mutaties bestaan in genen zoals BRCA 1 en BRCA 2.

    • Geografische factoren spelen ook een rol: vrouwen in Europa en de VS hebben vier tot zeven keer meer kans op het ontwikkelen van borstkanker dan vrouwen in andere landen. Dit heeft waarschijnlijk te maken met de leeftijd waarop ze kinderen krijgen, het geven van borstvoeding, dieet, overgewicht, lichamelijke beweging en omgevingsfactoren. Wat betreft dieet zijn er nog geen duidelijke correlaties gevonden. Er zijn aanwijzingen dat lichaamsbeweging een kleine beschermende factor is. Borstvoeding is een andere beschermende factor: hoe langer men dit geeft, des te meer reductie van het risico.

    • Omgevingsfactoren: er is een verdenking dat organische chloorpesticiden een oestrogeenachtig effect op mensen hebben en er wordt onderzoek gedaan naar het verband met borstkanker.

    • Leefstijl: er is geen duidelijke relatie tussen borstkanker en roken. Wel is obesitas van invloed op het risico: bij obese vrouwen jonger dan 40 jaar bestaat er een verminderd risico, als gevolg van meerdere anovulaire cycli en een verlaagde progesteronspiegel. Bij oudere postmenopauzale vrouwen geeft overgewicht echter een verhoogd risico op het ontwikkelen van borstkanker. Dit komt door de productie van oestrogenen door vetweefsel.

    De etiologie en pathogenese van borstkanker

    De grootste risico’s voor het ontwikkelen van een mammacarcinoom zijn genetisch en hormonaal. Bij een hormonale oorzaak wordt er gesproken van sporadische borstkanker.

    Erfelijkheid

    In twaalf procent van de gevallen van borstkanker gaat het om een erfelijke variant. Aan erfelijke borstkanker moet gedacht worden als het optreedt voor de menopauze, als het individu een ander soort carcinoom in de voorgeschiedenis heeft of als er een positieve familieanamnese is. Er is sprake van een positieve familieanamnese als:

    • Één eerste of tweede graads familielid met een mammacarcinoom voor het 50ste levensjaar.

    • Twee of meer eerstegraads verwanten met een mammacarcinoom (ongeacht de leeftijd)

    • Drie of meer tweedegraads/eerstegraads verwanten met een mammacarcinoom (ongeacht de leeftijd)

    In een kwart van de gevallen is er een verhoogd risico op borstkanker door één mutatie. Het gaat dan om een mutatie in een zogenaamd tumorsuppressorgen: een gen betrokken bij reparatie van DNA, bij de controle van de celcyclus en de regulatie van de apoptose. Meest voorkomend zijn mutaties in BRCA1 of BRCA2. Van de draagsters krijgt 30 tot 90%, afhankelijk van de specifieke mutatie, ooit borstkanker. Ook de kans op ovarium- en verschillende soorten epitheelkanker zijn verhoogd. BRCA1 en BRCA2 zijn grote genen en er zijn honderden mutaties mogelijk, waarvan maximaal 0,2 procent borstkanker veroorzaakt. Dit maakt screenen in de algemene populatie lastig. Er wordt wel gescreend wanneer er sprake is van een positieve familieanamnese. Er is dan de mogelijkheid om de mammae extra in de gaten te houden en om preventief mastectomie en/of oophorecteomie (chirurgisch verwijderen van de ovaria) te verrichten.

    BRCA1 tumoren zijn vaak slecht gedifferentieerd en hebben medullaire kenmerken. Ze zorgen niet voor expressie van hormoonreceptoren, er is geen overexpressie van HER2/neu en ze worden daarom ook wel trippelnegatief genoemd. BRCA2 tumoren zijn ook vaak slecht gedifferentieerd, maar zijn wel vaak oestrogeenreceptor positief, in tegenstelling tot BRCA1-tumoren. Andere mutaties zijn in P53 bij het Li-Fraumenisyndroom, CHEK2 bij de Li-Fraumeni variant, PTEN, LKBI/SKT11 en ATM.

    Sporadisch

    De belangrijkste risicofactoren bij deze vormen van borstkanker zijn gerelateerd aan de blootstelling aan hormonen. Sporadische borstkanker komt voornamelijk voor bij vrouwen na de menopauze. Leeftijd, leeftijd bij de menarche, leeftijd bij menopauze, reproductieve geschiedenis van de vrouw, het geven van borstvoeding en het toedienen van exogeen oestrogeen kunnen aanleiding geven tot een te grote blootstelling aan hormonen, waardoor een mammacarcinoom kan ontstaan. Er zijn een aantal vermoedelijke pathways. Zo leiden hormonen tot proliferatie van cellen en hoe meer proliferatie, des te groter is de kans op DNA schade. Als er eenmaal (pre)maligne cellen aanwezig zijn, kunnen hormonen deze cellen stimuleren in hun groei. Ook worden omliggende stromacellen en epitheel gestimuleerd, die de (pre)maligne cellen kunnen ondersteunen.

    Classificatie bij mammacarcinomen

    In 95% van de gevallen gaat het om adenocarcinomen. Binnen de adenocarcinomen dien je onderscheid te maken tussen carcinoma in situ en het invasieve carcinoom. Bij een carcinoma in situ bevindt de neoplastische proliferatie zich alleen in de ductuli en lobuli en niet door de basaalmembraan treedt. Het invasieve carcinoom treedt wel door de basaalmembraan en komt daardoor in de stroma terecht. Deze carcinomen hebben de mogelijkheid om te metastaseren. Daarnaast is er nog het onderscheid tussen een lobulair carcinoom, een speciaal type carcinoom, en het ductale carcinoom dat de andere soorten omvat. Het gaat hierbij dus niet om de plaats waar zij zich bevinden, maar om de kenmerken van de cellen.

    Ductaal carcinoma in Situ (DCIS)

    Een DCIS is nog niet een maligne afwijking, maar heeft een grote kans om invasief te worden. Sinds men is begonnen met preventief screenen op borstkanker met mammografie is de diagnose DCIS gestegen van 5% naar 15 tot 30% van alle carcinomen. Meestal wordt DCIS op een mammografie herkend door calcificatie en minder vaak als densiteit veroorzaakt door fibrose om de DCIS. Zelden is de presentatie met tepeluitvloei of wordt het toevallig ontdekt bij een biopt. DCIS kenmerkt zich door een clonale celpopulatie die beperkt blijft tot de lobuli en ductuli. Myoepitheelcellen zijn niet betrokken of afgenomen in aantal. Een hele sector van een borst kan zijn aangedaan door DCIS, omdat het zich via de ductuli en lobuli kan verspreiden. Het kan bij DCIS gaan om een comedocarcinoom, bestaande uit pleomorfe cellen of om het noncomedocarcinoom, bestaande uit monomorfe cellen. Bij DCIS wordt ook wel de ziekte van Paget gezien. Hierbij breidt het DCIS zich uit naar de melkductuli van de tepel zonder de basaalmembraan door te gaan. De maligne cellen zorgen er echter voor dat het plaveiselcelepitheel van de ductuli kapotgaat, waardoor extracellulaire vloeistof kan uittreden en kan zorgen voor een rode uitbarsting met korstvorming. De diagnose van de ziekte van Paget kan alleen worden gesteld door middel van radiologisch onderzoek en een punctie. De behandeling van DCIS is mastectomie en bestraling. In 95% van de gevallen is dit curatief. Bij grotere tumoren wordt een schildwachtklierprocedure aangeraden, omdat een invasieve haard kan worden gemist.

    Lobulair carcinoma in Situ (LCIS)

    Een LCIS is vrij zeldzaam en wordt meestal bij toeval ontdekt. Meestal komt het voor bij jonge vrouwen. LCIS is zelf geen maligne afwijking, maar kan zich ontwikkelen tot een lobulair invasief carcinoom. Het is vaak multicentrisch en bilateraal. Bij LCIS zijn er geen calcificaties of densiteiten op de mammografie zichtbaar door reacties van de stroma en de diagnose wordt dus alleen gesteld na een biopt. In tegenstelling tot DCIS is er bij LCIS verlies van expressie van E-cadherine, een eiwit dat zorgt voor de cohesie van normale epitheelcellen in de mammae. Onder de microscoop zien de cellen er daarom rond uit en zitten ze los van elkaar. De cellen bij een LCIS en bij een invasief lobulair carcinoom zijn identiek qua uiterlijk en hebben dezelfde genetische afwijkingen, zoals het verlies van E-cadherine. Bij LCIS komen vrijwel altijd oestrogeen- en progesteronreceptoren tot expressie. Er is geen overexpressie van HER2/neu. De behandelingsopties bestaan uit bilaterale profylactische mastectomie, tamoxifen of zoals meestal wordt gedaan follow-up en screening.

    Invasief carcinoom

    Bij invasieve carcinomen is er vaak een palpabele massa en als zo’n massa er is, vindt men in 50% van de gevallen lymfemetastasen. Grote carcinomen kunnen aan de borstkaswand vastzitten. Als de tumor zich bij de tepel bevindt, kan er retractie optreden. Er kan lymfoedeem en huidverdikking optreden en er kan soms een peau d’orange zijn. Op een mammografie is er een densiteit zichtbaar. Hiermee kun je een carcinoom vaststellen die gemiddeld half zo groot is als een voelbare tumor. Er zijn ook inflammatoire carcinomen. Hierbij is de borst gezwollen en erythemateus. Er is dan in de borst sprake van invasie en obstructie van de lymfevaten. Het onderliggende carcinoom wordt bij dit beeld soms door zijn diffusiteit (en daarmee gepaarde gaande afwezigheid van een palpabele massa) niet ontdekt.

    Invasief ductaal carcinoom/No special type (NST)

    De meeste invasieve carcinomen zijn van dit type (70-80%). De tumoren zijn hard en hebben een irregulaire rand. De histologische kenmerken zijn zeer divers en variëren van goed ontwikkeld met tubulusformatie, kleine ronde kernen en rare mitosevormen tot nauwelijks ontwikkelt. De behandeling is afhankelijk van de specifieke soort van NST: luminaal A (meest voorkomend, ER positief en HER2/neu negatief), luminaal B (hogere graad en/of sterker proliferatief, worden soms aangeduid als triple positief), normal breast like (meestal goed gedifferentieerde ER positieve en HER2/neu negatieve carcinomen), basal-like (triple negatieve tumoren) en de HER2 positieve carcinomen (ER negatief). Bij de soorten die HER2/neu overexpressie vertonen, wordt behandeld met Herceptin en chemotherapie.

    Invasief lobulair carcinoom

    Bij het invasieve lobulaire carcinoom is er vaak een palpabele massa met een onregelmatige rand aanwezig. Op een mammografie kan het ontdekt worden door een densiteit. Histologisch zijn er rijen van invasieve tumorcellen en is er geen tubulusvorming. Lobulaire invasieve carcinomen hebben een ander patroon van metastase dan andere vormen van mammacarcinomen, ze metastaseren naar het gastro-intestinale systeem, naar het (retro)peritoneum, naar de meningen, de ovaria en de uterus. Ze komen vaker bilateraal voor.

    Andere vormen van mammacarcinomen zijn het medullaire carcinoom (veelal bij vrouwen eind 60 jaar, goed omgrensd en vaak geassocieerd met BRCA1 mutaties), het mucineuze carcinoom (vooral bij oudere vrouwen, langzaam groeiend), het tubulaire carcinoom (veelal bij vrouwen eind 40 jaar met kleine onregelmatige densiteit die goed gedifferentieerd zijn, welke gepaard gaan met een goede prognose), het invasieve papillair carcinoom (vaak lymfekliermetastasen en een slechtere prognose) en het metaplastische carcinoom (triple negatief en erg zeldzaam).

    Prognostische factoren

    De prognose hangt vooral af van de pathologische achtergrond van de primaire tumor en de status van de lymfeklieren. Dit is belangrijk voor de keuze van behandeling en informatieoverdracht naar de patiënten. De grote prognostische factoren zijn:

    • Invasief carcinoom vs. carcinoma in situ: aangezien het carcinoom in situ niet kan metastaseren is dit prognostisch veel beter. Als er sprake is van mortaliteit, dan komt dit doordat er toch sprake was van een invasieve ontwikkeling in gebieden die ten tijde van de diagnose niet zijn ontdekt.

    • ‘Verre’ metastase: wanneer er metastasering naar andere plekken van het lichaam dan binnen de borst of naar de nabijgelegen lymfeknopen is opgetreden, dan is genezing onwaarschijnlijk.

    • Lymfeknoopmetastase: als er geen verre metastases zijn, dan is axillaire metastasering de belangrijkste prognostische factor. Als er geen lymfeklierbetrokkenheid is dan is de 10-jaars overleving 70-80%. Bij drie lymfeklieren met metastase nog 30-40% en bij tien lymfeknopen is die gedaald tot 10-15%.

    • Tumorgrootte: hoe groter de primaire tumor, hoe slechter de prognose. Bij een tumor van minder dan 1 cm is de 10-jaars overleving 90%, bij meer dan 2 cm is deze 77%. Dit is de tweede belangrijke prognostische factor.

    • Lokale ontwikkeling: behandeling van een tumor is moeilijk als deze ingegroeid is in de huid of het skelet.

    • Inflammatoir carcinoom: als er betrokkenheid is van dermale lymfevaten, dan is de prognose slecht. Er is dan sprake van zwelling van de borst en verdikking van de huid als gevolg van de betrokkenheid van de lymfeknopen. De 3-jaars overleving is slechts 3-10%.

    Kleine voorspellende factoren:

    • Histologisch subtype: speciale types hebben een betere overlevingskans dan NST.

    • Histologische gradatie: goed, matig of slecht gedifferentieerd. Hoe minder gedifferentieerd, des te slechter is de prognose.

    • Oestrogeen- en progesteronreceptor-positiviteit: dit geeft een betere uitkomst en is een belangrijke voorspellende factor in het al dan niet reageren op hormoontherapie.

    • Her2/neu: overexpressie hiervan geeft op zich een slechtere overleving, maar dit betekent echter wel dat er beter behandeld kan worden met bijvoorbeeld Herceptin.

    • Lymfovasculaire invasie: dit heeft een sterke correlatie met lymfekliermetastases en is daarom een negatieve factor.

    • Proliferatiesnelheid: de prognose is slechter bij een hogere mitose-activiteit. Deze cellen zijn echter wel gevoeliger voor chemotherapie.

    • DNA inhoud: bij een abnormale hoeveelheid DNA is de prognose slechter.

    • Reactie op chemotherapie voor chirurgie (neo-adjuvante therapie): slechte reactie hierop geeft tevens een slechtere prognose.

    • Het specifieke genexpressieprofiel. Dit kan de kans op overleving en ziektevrije periode helpen inschatten. Het kan patiënten identificeren, die de meeste kans hebben op een bepaald type succesvolle chemotherapie.

    Stromatumoren

    Er wordt onderscheid gemaakt tussen intralobulair stroma en interlobulair stroma. Intralobulaire stromatumoren kunnen groeifactoren afgeven voor epitheel, waardoor deze tumoren een niet-neoplastische epitheelcomponent kunnen hebben. Uit interlobulair stroma kunnen dezelfde soort tumoren worden gevormd als uit steunweefsel elders in het lichaam.

    • Intralobulair

      1. Het fibroadenoom is de vaakst voorkomende goedaardige tumor bij vrouwen. Het gaat vaak om een vrouw tussen de 20 en 30 jaar met bilateraal meerdere palpabele massa’s. Bij oudere vrouwen wordt het fibroadenoom eerder gevonden als densiteit op een mammogram. Het fibroadenoomepitheel is hormoongevoelig (cyclus, zwangerschap). Fibroadenomen zijn witte, ronde, goed afgegrensde tumoren, die duidelijk anders zijn dan het omliggende gele vet. Onder de microscoop is er een scherp begrensde proliferatie van intralobulair stroma zichtbaar, dat het bijbehorende epitheel wegduwt.

      2. De Phyllodestumor ontstaat ook uit intralobulair stroma. De patiënte is vaak 50 tot 60 jaar en heeft een palpabele massa. Sommige worden echter middels een mammagram gevonden. Morfologisch kan het onderscheid worden gemaakt met een fibroadenoom op basis van cellulariteit, mitoseaantal, nucleair polymorfisme, stromale overgroei en infiltrerende randen. Phyllodestumoren moeten ruim weggesneden worden of er moet mastectomie plaatsvinden, om op die manier lokale recidieven te voorkomen. De meeste tumoren zijn lowgrade en er is geen sprake van uitzaaiingen. Dissectie van de lymfeklieren van de oksel is dan ook niet nodig. Bij de hooggraadse tumoren (zelden) kan hematogene metastase van de maligne stromacomponent, en niet van de epitheelcomponent, plaatsvinden.

    • Interlobulair

    Interlobulaire stromatumoren hebben, in tegenstelling tot intralobulaire stromatumoren, geen epitheelcomponent. Mogelijke benigne tumoren zijn pseudo-angimateus stroma hyperplasie, fibreuze tumoren, myofibroblastomen, lipomen en hamartomen. Maligne tumoren omvatten de volgende tumoren: het angiosarcoom, rhabdomyosarcoom, liposarcoom, chondrosarcoom, leiomyosarcoom en osteosarcoom. Hierbij zijn er vaak hematogene metastasen naar de longen, maar metastasen naar de lymfeklieren zijn zeldzaam.

    Andere maligne tumoren van de borst

    Uiteraard kunnen ook tumoren van bijvoorbeeld huid of zweetkliertjes in de borst ontstaan. Ook lymfomen kunnen voorkomen. Metastase naar de borst is zeldzaam en komt meestal vanuit de andere borst. Andere niet-borstmetastasen zijn afkomstig van een melanoom of longcarcinoom.

    De borst bij de man

    De normale mannelijke borst bestaat uit de tepel en het rudimentaire buizensysteem. Er is geen formatie van de lobuli. Er kunnen zich twee processen voordoen:

    • Gynaecomastie: dit is de uni- of bilaterale vergroting van het borstweefsel bij een man. Er is microscopisch dens collageenrijk bindweefsel en micropapillaire epitheelhyperplasie zichtbaar. Het kan het resultaat zijn van een onbalans tussen oestrogeen en progesteron. Net als de vrouwelijke borst is ook de mannelijke borst gevoelig voor hormonen. Wanneer er een disbalans bestaat tussen androgenen en oestrogenen, kan dit leiden tot stimulatie van het borstweefsel. In de pubertijd kan dit fysiologisch zijn. Maar in andere situaties kan dit ook pathologisch zijn. Gynaecomastie wordt gezien bij levercirrose (de lever metaboliseert oestrogeen), als de androgene functie van de testis faalt en bij het syndroom van Klinefelter (XXYkaryotype). Bepaalde medicijnen, drugs, alcohol en anabole steroïden kunnen ook de oorzaak zijn.

    • Mammacarcinoom: 1 op de 100 patiënten is man.

    Risicofactoren zijn hetzelfde als bij vrouwen en ook de pathologie is opvallend gelijk. Gynaecomastie geeft geen hoger risico op een mammacarcinoom. Een verschil met vrouwen is dat papillaire carcinomen vaker voorkomen bij mannen, terwijl ze minder vaak een lobulair carcinoom hebben. De carcinomen zijn daarnaast bij mannen vaker ER-positief. Borstepitheel zit bij mannen alleen rond de tepel, dus daar bevindt zich een palpabele massa meestal. Doordat de borstkaswand dicht bij de tumor zit, kan invasie snel plaatsvinden. Ook ligt de tumor dicht op de huid waardoor ulceratie veel eerder optreedt dan bij vrouwen. De metastasepatronen, de behandeling en prognose zijn gelijk aan die bij vrouwen.

    Wat zegt de klinische geneeskunde over gastro-intestinale aandoeningen? - Chapter 13

    Wat zegt de klinische geneeskunde over gastro-intestinale aandoeningen? - Chapter 13

    Gastro-intestinale afwijkingen

    Gastro-intestinale afwijkingen worden ‘functioneel’ benoemd, wanneer er sprake is van symptomen, zonder dat er afwijkingen van de digestie en absorptie van voedingsmiddelen, vloeistoffen en elektrolyten zijn aangetoond en zonder dat structurele of neuromusculaire afwijkingen worden geïdentificeerd. Patiënten met functionele gastro-intestinale aandoening (FGID) hebben een heftigere gastro-intestinale motiliteitsrespons dan normaal. Viscerale hypersensitiviteit kan gerelateerd zijn aan een veranderde sensitiviteitsreceptor van de viscus, een verhoogde excitabiliteit van de dorsale hoornneuronen of een veranderde centrale modulatie van de sensaties.

    10% van de patiënten met een doorgemaakte gastro-enteritis ontwikkelen FGID, mogelijk door post-infectieuze galzout malabsorptie, verandering van het mucosale immuunsysteem of door gebruik van antibiotica. Verklaring vanuit de associatie met de hersenen kan worden gesproken van extrinsieke (visie en reuk) en intrinsieke (emoties en gedachten) beïnvloeding van de gastro-intestinale sensaties. Andersom kunnen gastro-intestinale klachten weer affect hebben op de centrale pijnperceptie, gemoedstoestand en gedrag. Psychologische stress verergeren de symptomen. Genetische en omgevingsfactoren hebben invloed op de psychosociale ontwikkeling en de gastro-intestinale dysfunctie.

    Functionele oesophagus symptomen kunnen zijn: maagzuur, borstpijn, dysfagie en globus. Globus presenteert zich als persisterende of intermitterende sensatie van gezwel of vreemd lichaam in de keel, met verergering van sensatie tussen maaltijden en het afwezig zijn van dysfagie en pijn bij het slikken. Ook kan functioneel borstpijn optreden, in afwezigheid van een cardiologische oorzaak, gastro-oesofageale reflux of achalasie. Meer dan de helft van de patiënten reageert op hoge dosering van zuurremmende therapie, nitraat- en calciumkanaal remmers. Antidepressiva kunnen ook effectief zijn.

    Functionele gastroduodenale afwijkingen kunnen zijn: non-ulcer dyspepsie, boeren, misselijkheid, overgeven en herkauwingssyndroom. Functionele dyspepsie wordt verdeeld in epigastrisch pijnsyndroom, met pijn centraal in de bovenbuik of postprandiaal angstsyndroom, met het gevoel van niet-pijnlijk ongemak in de bovenbuik, oververzadiging, misselijkheid, vol en opgeblazen gevoel. Een helicobacter pylori infectie dient uitgesloten te worden. Bij oudere patiënten met alarmsymptomen dient echoscopie uitgevoerd te worden. Behandeling wordt sterk beïnvloed door een placeborespons. Een deel reageert al effectief op begrip, een diagnose, uitleg en leefstijlveranderingen als vermindering van intake van vet, koffie, alcohol en sigaretten. Protonpompremmers en prokinetische middelen worden gebruikt bij patiënten met epigastrische pijnsyndroom en postprandiaal angstsyndroom. H. pylori therapie helpt soms bij functionele dyspepsie.

    Bij aerofagie is er sprake van een onbewust herhaaldelijk patroon van slikken, inname van lucht en boeren, losstaand van maaltijden. Bij functioneel braken kan pathologie van het centrale zenuwstelsel of migraine syndromen serieus overwogen worden. Functioneel braken wordt gekarakteriseerd door minstens één dag per week braken, de afwezigheid van een eetstoornis, herkauwing of een psychiatrische aandoening, afwezigheid van zelf- of medicijn-geïnduceerd braken en de afwezigheid van metabolische, neuromusculaire of darmafwijkingen. De behandeling bestaat uit het geven van anti-braakmiddelen en antidepressiva, gedragstherapie, psychotherapie en dieetadviezen.

    Functionele afwijkingen van de darmen kunnen zijn: prikkelbaar darmsyndroom, een opgeblazen gevoel, constipatie, diarree en aspecifieke functionele darmaandoening. In de Westerse populatie heeft één op de vijf symptomen van prikkelbaar darmsyndroom, waaronder meer vrouwen dan mannen. 50% daarvan presenteert zich bij de huisarts. Dit kan gepaard gaan met het chronische vermoeidheidssyndroom, fibromyalgie en temporomandibulaire gewrichtsdysfunctie. Infectieuze diarree treedt op bij 7-30% van de patiënten. Ze hebben een veranderd defecatiepatroon, met afwisselend diarree en obstipatie, soms geassocieerd met rectaal bloedverlies, nachtelijke pijn, koorts en gewichtsverlies. Vaak hebben de patiënten ook last van angst of depressie. Tot voor nu wordt dit behandeld met een HT4 receptor-agonist, maar de 5HT3 receptor agonist wacht nog op goedkeuring.

    De oorzaak van een droge mond (xerostomie) kan liggen aan verschillende oorzaken: syndroom van Sjögren, gebruik van medicijnen, radiotherapie, psychogene oorzaken of door uitdroging, shock en nierziekten. Een ontsteking van de speekselklieren (sialadenitis) kan worden veroorzaakt door een virus of door een bacterie. Obstructie van speekselflow (salvia) wordt meestal veroorzaakt door een steen (calculus). Hierbij ontstaat een pijnlijke zwelling van de klier submandibularis na het eten. Bij palpatie zijn de stenen soms zelfs te voelen aan de onderkant van de mond. Door middel van een sialendoscopie kan de steen worden verwijderd wat meteen de klachten doet verdwijnen. Tumoren van de speekselklieren komen niet vaak voor, maar als ze ontstaan zitten ze meestal in de parotis klier.

    De structuur van keel en slokdarm

    De oesophagus is een buis van ongeveer twintig centimeter lang bestaande uit spieren. De functie van de oesophagus is het transporteren van voedsel van de mond naar de maag. De oesophagus bestaat uit een buitenste longitudinale laag en een binnenste circulaire laag van spieren die beide gestreept zijn. Het bovenste gedeelte van de oesophagus bestaat uit gestreepte spieren. In het onderste twee derde deel van de oesophagus bestaat de spierlaag uit gladde spiercellen. In het onderste twee derde deel van de oesophagus zit de onderste oesofageale sfincter (LES). De oesophagus is bekleed met meerlagig niet-verhoornd plaveisel epitheel. De overgang van de oesophagus naar de maag wordt de zigzaggende Z lijn genoemd, omdat er een overgang is van meerlagig plaveisel epitheel naar cilinderepitheel van de maag. De oesophagus wordt gescheiden van de keel door een bovenste oesofageale sfincter (UES) die normaal gesproken gesloten is. De onderste oesofageale sfincter (LES) assisteert de sfincter van het diafragma en is voornamelijk verantwoordelijk voor het voorkomen van terugvloed van reflux uit de maag.

    Slikreflex

    Het slikken is een willekeurige beweging waarbij de bolus van de mond naar de keel wordt gebracht. De slikreflex is gelegen in de dorsale motornucleus van de nervus vagus in de hersenstam. Faryngale en oesofageale peristaltiek regelen de slikreflex wat primaire peristaltiek veroorzaakt. Secundaire peristaltiek ontstaat als de bolus in het lumen komt wat geregeld wordt door lokale intra oesofageale reflexen. De gladde spieren van de LES worden geënerveerd door de vagale autonomische motor zenuwen.

    Dysfagie

    Dysfagie betekent het hebben van problemen met slikken. Het wordt gekenmerkt door een gevoel van een obstructie tijdens de passage van eten en drinken in de keel of oesophagus. Dysfagie wordt vooral erger bij het innemen van vast voedsel. Dysfagie kan verschillende oorzaken hebben zoals; ziektes van de mond en tong (tonsillitis), neuromusculaire aandoeningen, of een stoornis van de motiliteit van de oesophagus.

    Regurgitatie

    Met regurgitatie wordt terugstroming van reflux uit oesophagus naar de mond en farynx bedoeld. Het komt veel voor bij patiënten met gastro-oesofageale refluxziekten.

    Maagzuur

    Maagzuur geeft vaak een retrosternale brandende pijn dat kan uitstralen naar de hals en naar de borst. Het is soms lastig te onderscheiden van pijn door ischemische hartziekten. Het hebben van maagzuur is vooral ’s nachts het hevigst, als de patiënt ligt. Door het liggen zorgt de zwaartekracht ervoor dat reflux ontstaat.

    Symptomen van oesofageale aandoeningen

    Het meest voorkomende symptoom van een stoornis van de oesophagus is gewichtsverlies doordat patiënten minder inname hebben van voedsel. Er zijn verschillende manieren van onderzoek naar oesofageale aandoeningen, zoals het innemen van bariumcontrast of voedsel. Daarnaast kan ook manometrie worden uitgevoerd. Bij een manometrie wordt een katheter via de neus ingebracht naar de oesophagus, waarbij de druk in de oesophagus gemeten wordt. Dit onderzoek dient te worden uitgevoerd als de diagnose niet gesteld kan worden door de voorgeschiedenis, barium radiologie of door endoscopie. Een ander onderzoek is het meten van de pH-waarde in de onderste oesofageale sfincter om het aantal episoden van zure reflux te identificeren.

    Gastro-oesofageale reflux

    Tijdens het slikken zijn alle spieren van de oesophagus gerelaxeerd, behalve de spieren van de onderste- en bovenste oesofageale sfincters. De onderste oesofageale sfincter is open wanneer er een bolus van voedsel passeert. De contractie van het diafragma en de onderste oesofageale sfincter voorkomen de terugvloed van zure reflux. Een aantal factoren kunnen gastro-oesofageale reflux veroorzaken namelijk: zwangerschap, obesitas, voeding (vet, chocolade, koffie of alcohol inname), grote maaltijden, roken van sigaretten, gebruik van bepaalde medicijnen en een hiatus hernia.

    Oesophagitis

    Bij oesophagitis zijn de celverbindingen beschadigd waardoor er een toegenomen zuurdiffusie ontstaat wat uiteindelijk leidt tot cel schade. Een oesophagitis of een hiatus diafragmatica wordt bevestigd door een endoscopie. Een andere manier van het stellen van de diagnose oesophagitis is door het meten van vierentwintig uur pH intraluminaal. Hierbij wordt de hoeveelheid reflux vastgesteld. Overmatige reflux wordt vastgesteld bij een pH lager dan vier.

    Behandeling van reflux

    De behandeling voor mensen met reflux symptomen is meestal eenvoudig en bestaat uit maagzuurremmers, afvallen of het hoofd iets hoger leggen ’s nachts in bed. Daarnaast is het belangrijk dat inname van alcohol en koffie wordt verminderd er dat roken zoveel mogelijk wordt beperkt. Protonpompremmers worden ook gebruik bij de behandeling van refluxklachten. Protonpompremmers verlagen de maagzuursecretie met ongeveer 90 procent. De meeste patiënten met een gastro-oesofageale reflux ziekte reageren goed op de protonpompremmers. Patiënten die niet goed op de protonpompremmers reageren krijgen soms de diagnose NERD, wanneer de endoscopie niet afwijkend is. Indicaties om te opereren voor reflux klachten zijn: intolerantie voor medicatie, patiënten die geen medicatie meer willen slikken of patiënten die een therapie zouden krijgen met levenslange bijwerkingen.

    Peptische strictuur

    Een peptische strictuur ontstaat meestal bij mensen met een leeftijd boven de zestig jaar. Klachten van intermitterende dysfagie voor vast voedsel die erger worden na een lange tijd zijn kenmerkende verschijnselen. In de meeste ergere gevallen werken de protonpompremmers niet en is een endoscopische dilatatie noodzakelijk.

    Barrett oesophagus

    Een Barrett oesophagus ontstaat als het normale oesofageale plaveiselepitheel vervangen wordt door cilinderepitheel van de maag. Het is een complicatie van een gastro-oesofageale reflux ziekte en de patiënt heeft bijna altijd een hiatus hernia. De diagnose wordt gesteld door een endoscopie. Mensen met obesitas hebben een verhoogde kans op het krijgen van een Barrett oesophagus. Daarnaast is een Barrett oesophagus vooral te zien bij mannen van middelbare leeftijd met overgewicht. Een Barrett oesophagus geeft een vergrote kans op het ontwikkelen van een adenocarcinoom.

    Bewegingsstoornissen van oesophagus

    Achalasie (=bewegingsstoornis van de oesophagus) wordt gekenmerkt door de afwezigheid van oesofageale peristaltiek en een toegenomen relaxatie van de onderste oesofageale sfincter. Achalasie komt even vaak voor bij mannen als bij vrouwen en heeft een lage incidentie. Patiënten hebben vaak al jaren last van intermitterende dysfagie klachten voor zowel vast als vloeibaar voedsel. Doordat de oesophagus wijder is geworden ontstaat er vooral ’s nachts regurgitatie van voedsel. Mensen hebben soms pijn op de borst, wat niet verward dient te worden met hartaandoeningen.

    Onder de microscoop is er een ontsteking aan de myenterische plexus van de oesophagus te zien met een vermindering van het aantal ganglion cellen. Voor onderzoek naar achalasie kan een X-thorax worden gemaakt, hierop is een verwijde oesophagus te zien. Ook kan de patiënt bariumcontrast innemen, waarbij te zien is dat peristaltiek afwezig is en een vernauwing van de onderste oesofageale sfincter. Om achalasie te behandelen wordt de onderste oesofageale sfincter meestal endoscopisch wijder gemaakt via een hydrostatische ballon. Laparoscopisch kan ook gekozen worden voor het splitsen van de onderste oesofageale sfincter.

    Diffuse oesofageale spasmen

    Een ernstige vorm van dismobiliteit van de oesophagus zijn diffuse oesofageale spasmen. Symptomen kunnen retrosternale pijn op de borst geven en dysfagie. De peristaltiek en de contracties van de oesophagus zijn gestoord. De dismobiliteit van de oesophagus komt vooral voor bij patiënten met een leeftijd boven de zestig jaar. Wanneer er ook sprake van reflux is, zijn protonpompremmers een goede behandeling. Een ballondilatatie of het doorsnijden (myotomie) van de onderste slokdarm sfincter is vaak noodzakelijk.

    Onderste oesofageale ringen

    Er zijn twee typen onderste oesofageale ringen, namelijk:

    • Schatzkiring. De Schatzkiring is gelegen bij de overgang van plaveisel naar kolom epitheel. In de voorgeschiedenis hebben patiënten vaak last gehad van intermitterende obstructie van voedsel. Om de diagnose te stellen wordt gekozen voor een barium contrast.

    • Musculaire ring. De musculaire ring ligt boven de ring van de mucosa en komt niet vaak voor. Het is bedekt met plaveiselepitheel en kan dysfagie geven.

    Infecties

    Infecties van de oesophagus geven een pijnlijke zwelling en ontstaan vooral bij patiënten die immunosuppressiva gebruiken, AIDS hebben of onder behandeling van chemotherapie zijn. Infectie kan ontstaan met Candida, Herpes simplex, Cytomegalovirus of Tuberculose. Typisch voor een infectie met Candida zijn karakteristieke witte plaques. Tuberculose geeft diep gelegen ulcera en lymfadenopathie.

    Eosinofiele oesofagitis

    Patiënten met eosinofiele oesofagitis hebben vaak zelf of in de familie voorkomende allergieën, zoals een voedsel allergie. Patiënten hebben vaak al jaren last van dysfagie, brandend maagzuur en pijn in de oesophagus. Het komt vooral voor in blanke mannen rond de 35 jaar oud. Op een endoscopie is een rimpelige mucosawand te zien met verlies van het musculaire patroon door een verdikte mucosa. Als therapie worden topicaal corticosteroïden voorgeschreven die geïnhaleerd dienen te worden. Een oesofageale perforatie ontstaat vooral tijdens een endoscopische dilatatie.

    Vooral patiënten met een maligniteit of een corrosieve strictuur hebben kans op het ontwikkelen van een perforatie. Een spontane oesofageale ruptuur kan ontstaan na hevig braken. Symptomen zijn pijn op de borst en het in elkaar vallen (collaps) van de oesofagus. Een spontane oesofageale ruptuur kan een gevolg zijn van alcoholinname. De diagnose kan gesteld worden door een contrast met water of via een CT scan. Het is de meest dodelijke perforatie van het maagdarmstelsel.

    Tumoren van de oesofagus

    Plaveiselcarcinomen komen vooral in het bovenste en middelste deel van de oesophagus voor. Adenocarcinomen daarentegen komen vooral in het onderste gedeelte van de oesophagus voor, rond de cardia. Een carcinoom van de oesophagus ontstaat vooral bij patiënten rond de zestig- zeventig jaar oud. Patiënten hebben last van dysfagie, bij het slikken van vast voedsel maar vooral bij vloeibaar voedsel. De klachten geven vaak pijn. Metastase in lymfeklieren komen voor en gewichtsverlies door dysfagie of door anorexia zijn bekende gevolgen. Uiteindelijk kan een obstructie van de oesophagus problemen geven met slikken, hoesten en aspiratie.

    Plaveiselcelcarcinoom bevindt zich meestal in het bovenste twee derde deel van de slokdarm en komt dubbel zo veel voor in mannen als in vrouwen. Dit komt vooral voor in Ethiopië, China, Zuid- en Oost-Afrika, met een dalende incidentie. De belangrijkste risicofactoren zijn tabak, alcohol, obesitas en lage fruit en groente consumptie. Uit studies blijkt een dieet met gesatureerde vetten, cholesterol, verfijnde granen, rood vlees, vis en wit vlees consumptie ook gepaard te gaan met een verhoogd risico. Adenocarcinoom groeit voornamelijk uit cilinderepitheel in het onderste een derde deel van de oesophagus. Een voorbeeld is Barrett’s oesophagus. De incidentie in het Westen neemt toe. Primaire kleincellige kanker is echter zeldzaam.

    Oesophaguskanker heeft een piekincidentie bij de leeftijd van 60 tot 70 jaar. Er zijn meestal klachten van dysfagie (slikproblemen) door obstructie, moeite met het eten van vaste stoffen, pijn (door naastgelegen structuren), lymfadenopathie, gewichtsverlies, anorexie, aspiratieproblemen en kuchen. De laesie kan ulceratief, proliferatief of scirrhous (hard en vezelachtig) zijn. Er treedt sneller directe invasie op van omliggende structuren en metastasering naar lymfeklieren, dan dat er diffuse metastasen ontstaan.

    De diagnose kan worden gesteld met endoscopie, cytologie, histologie en een barium sliktest. Voor de stadiëring wordt het TNM-systeem toegepast. Dit wordt bepaald door middel van een CT-scan, MRI-scan, endoscopische ultrasound, fijne naald aspiratie (FNA) van de lymfeklieren, laparoscopie en een positron emission tomografie (PET)-scan.

    De behandeling is afhankelijk van de leeftijd en gezondheidsstatus van de patiënt. Er kan worden gekozen voor curatieve chirurgie in combinatie met neoadjuvante en adjuvante chemoradiotherapie, bij oesophaguskanker zonder infiltraten buiten de wand. De palliatieve behandeling bestaat uit endoscopische dilatatie met laser- en brachytherapie, wat een beter resultaat geeft dan het plaatsen van een stent. Voor oppervlakkige carcinomen kan fotodynamische therapie (PDT) worden toegepast. Soms wordt echter alleen gekozen voor chemoradiatie en de hulp van een diëtist.

    Risicofactoren plaveiselcelcarcinoom

    De incidentie van het aantal plaveiselcarcinomen neemt af en het komt twee keer vaker bij mannen voor. Risicofactoren voor het ontwikkelen van een plaveiselcarcinoom zijn: roken van tabak, hoge alcoholinname, achalasie, corrosieve structuren, coeliakie en met radiotherapie behandelde borstkanker. Daarnaast is het hebben van obesitas en weinig inname van fruit en groente ook een risicofactor voor het krijgen van een plaveiselcarcinoom van de oesophagus. Een dieet met veel vezels, foliumzuur, vitamine C en groenten daarentegen verlagen het risico op het krijgen van oesophaguskanker. Rood en voorbewerkt vlees verhogen ook het risico op het krijgen van een plaveiselcarcinoom, waarbij wit vlees en vis het risico verlagen.

    Risicofactoren adenocarcinoom

    Een adenocarcinoom komt vooral voor in het onderste deel van de oesophagus. De incidentie van een adenocarcinoom neemt toe in geïndustrialiseerde landen. Voorafgaande reflux symptomen verhogen de kans op het krijgen van een adenocarcinoom met acht keer. Risicofactoren voor het krijgen van een adenocarcinoom zijn: brandend maagzuur, een Barrett oesophagus, roken van tabak, obesitas, borstkanker behandeld met radiotherapie en mensen met een hogere leeftijd.

    Onderzoek naar oesofaguscarcinoom

    Een CT-scan kan worden uitgevoerd om de grote van de tumor in beeld te brengen, betrokkenheid van lymfeklieren of metastasen in de longen. MRI geeft een minder goed beeld van metastasen in de longen. Een echo-endoscoop kan de diepte van de tumor en de mate van betrokkenheid van lymfeklieren bepalen. Laproscopie is nuttig als de tumor zich bevindt ter hoogte van de cardia om de mate van metastasen te bepalen. Een PET scan kan worden gedaan diepgelegen metastasen vast te stellen die worden vermoed na het doen van een CT scan.

    Behandeling plaveiselcelcarcinoom en adenocarcinoom

    De behandeling van een oesofagiale plaveiselcelcarcinoom en een adenocarcinoom hangt af van de leeftijd en status van de patiënt en de ernst van de ziekte. Opereren geeft het beste resultaat op genezen maar kan alleen uitgevoerd worden indien de tumor zich niet geïnfiltreerd heeft buiten de wand van de oesophagus. Een gelijktijdige toediening van chemotherapie en radiotherapie kan een goede oplossing zijn en zorgt voor een betere overleving.

    Functionele gastro-intestinale aandoeningen

    De term functioneel geeft aan dat er symptomen aanwezig zijn zonder dat er hiervoor een duidelijke oorzaak is. Symptomen die suggestief zijn voor een functionele gastro-intestinale aandoening zijn het hebben van alleen misselijkheid of braken. Andere symptomen zijn; boeren, pijn op de borst die niet gerelateerd is aan inspanning, buikpijn, slijm in de ontlasting of vol zitten na het eten. Patiënten met gastro-intestinale aandoeningen hebben een grotere gastro-intestinale motiliteit respons op levensgebeurtenissen dan mensen zonder deze aandoening. Daarnaast hebben deze patiënten veranderingen in de viscerale sensatie en hebben ze een lagere pijndrempel. Een theorie voor de verstoorde gastro-intestinale motiliteit zou kunnen zijn dat de gestoorde motiliteit kan leiden tot uitzetting wat vervolgens leidt tot een verhoogde gevoeligheid van pijn.

    Psychologische stress kan zorgen voor een verergering van de gastro-intestinale symptomen. Bij patiënten met functionele gastro-intestinale aandoeningen komt een psychologische storing vaker voor. Vaak leidt het tot psychosociale gevolgen in huis of op werk met daarnaast een verminderende kwaliteit van leven. Het ontwikkelen van psychosociale aandoeningen kan een combinatie zijn van de voorgeschiedenis, genetische- en omgevingsfactoren.

    Gastro-intestinale afwijkingen worden ‘functioneel’ benoemd, wanneer er sprake is van symptomen, zonder dat er afwijkingen van de digestie en absorptie van voedingsmiddelen, vloeistoffen en elektrolyten zijn aangetoond en zonder dat structurele of neuromusculaire afwijkingen worden geïdentificeerd. Functionele gastro-intestinale aandoeningen worden geclassificeerd met de Rome III criteria, verdeeld in functionele oesofagiale, gastro-duodenale, darm-, abdominaal pijnsyndroom, galblaas en sfincter van Oddi aandoeningen. Patiënten met functionele gastro-intestinale aandoening (FGID) hebben een heftigere gastro-intestinale motiliteitsrespons dan normaal. Viscerale hypersensitiviteit kan gerelateerd zijn aan een veranderde sensitiviteitsreceptor van de viscus, een verhoogde excitabiliteit van de dorsale hoornneuronen of een veranderde centrale modulatie van de sensaties.

    10% van de patiënten met een doorgemaakte gastro-enteritis ontwikkelen FGID, mogelijk door post-infectieuze galzout malabsorptie, verandering van het mucosale immuunsysteem of door gebruik van antibiotica. Verklaring vanuit de associatie met de hersenen kan worden gesproken van extrinsieke (visie en reuk) en intrinsieke (emoties en gedachten) beïnvloeding van de gastro-intestinale sensaties. Andersom kunnen gastro-intestinale klachten weer affect hebben op de centrale pijnperceptie, gemoedstoestand en gedrag. Psychologische stress verergeren de symptomen. Genetische en omgevingsfactoren hebben invloed op de psychosociale ontwikkeling en de gastro-intestinale dysfunctie.

    Functionele oesophagus symptomen kunnen zijn: maagzuur, borstpijn, dysfagie en globus. Globus presenteert zich als persisterende of intermitterende sensatie van gezwel of vreemd lichaam in de keel, met verergering van sensatie tussen maaltijden en het afwezig zijn van dysfagie en pijn bij het slikken. Ook kan functioneel borstpijn optreden, in afwezigheid van een cardiologische oorzaak, gastro-oesofageale reflux of achalasie. Meer dan de helft van de patiënten reageert op hoge dosering van zuurremmende therapie, nitraat- en calciumkanaal remmers. Antidepressiva kunnen ook effectief zijn.

    Functionele gastroduodenale afwijkingen kunnen zijn: non-ulcer dyspepsie, boeren, misselijkheid, overgeven en herkauwingssyndroom. Functionele dyspepsie wordt verdeeld in epigastrisch pijnsyndroom, met pijn centraal in de bovenbuik of postprandiaal angstsyndroom, met het gevoel van niet-pijnlijk ongemak in de bovenbuik, oververzadiging, misselijkheid, een vol en opgeblazen gevoel. Een helicobacter pylori infectie dient uitgesloten te worden. Bij oudere patiënten met alarmsymptomen dient echoscopie uitgevoerd te worden. Behandeling wordt sterk beïnvloed door een placeborespons. Een deel reageert al effectief op begrip, een diagnose, uitleg en leefstijlveranderingen als vermindering van intake van vet, koffie, alcohol en sigaretten. Protonpompremmers en prokinetische middelen worden gebruikt bij patiënten met epigastrische pijnsyndroom en postprandiaal angstsyndroom. H. pylori therapie helpt soms bij functionele dyspepsie.

    Bij aerofagie is er sprake van een onbewust herhaaldelijk patroon van slikken, inname van lucht en boeren, losstaand van maaltijden. Bij functioneel braken kan pathologie van het centrale zenuwstelsel of migraine syndromen serieus overwogen worden. Functioneel braken wordt gekarakteriseerd door minstens één dag per week braken, de afwezigheid van een eetstoornis, herkauwing of een psychiatrische aandoening, afwezigheid van zelf- of medicijn-geïnduceerd braken en de afwezigheid van metabolische, neuromusculaire of darmafwijkingen. De behandeling bestaat uit het geven van antibraakmiddelen, antidepressiva, gedragstherapie, psychotherapie en dieetadviezen.

    Functionele afwijkingen van de darmen kunnen zijn: prikkelbaar darmsyndroom, een opgeblazen gevoel, constipatie en diarree. In de Westerse populatie heeft één op de vijf symptomen van prikkelbaar darmsyndroom, waaronder meer vrouwen dan mannen. 50% daarvan presenteert zich bij de huisarts. Dit kan gepaard gaan met het chronische vermoeidheidssyndroom, fibromyalgie en temporomandibulaire gewrichtsdysfunctie. Infectieuze diarree treedt op bij 7-30% van de patiënten. Ze hebben een veranderd defecatiepatroon, met afwisselend diarree en obstipatie, soms geassocieerd met rectaal bloedverlies, nachtelijke pijn, koorts en gewichtsverlies. Vaak hebben de patiënten ook last van angst of depressie. Tot voor nu wordt dit behandeld met een HT4 receptor-agonist, maar de 5HT3 receptor agonist wacht nog op goedkeuring.

    Probiotica zijn levende of verzwakte bacteriële producten die een gezondheidsvoordeel opleveren voor de host. Bifidobacterium infantis schijnt prikkelbare darmsyndroom symptomen te kunnen verminderen. Prebiotica zijn onverteerbare voedingssupplementen die de groei van gezonde bacteriën in de darmflora stimuleert.

    Een functionele darmaandoening van de dunne darmen of de middendarm, gepaard met abdominale pijn en onverklaarbare klachten van een postprandiaal vol en opgeblazen gevoel, misselijkheid, anorexie en gewichtsverlies, wordt het ‘pain/gas/bloat syndrome’ genoemd. De klachten kunnen toenemen bij de maaltijd of in de nacht. De behandeling bestaat uit een combinatie van een selectieveserotonine heropname-remmer paroxetine en een prokinetisch middel domperidon of een gladde spier relaxantia mebeverine. Patiënten kunnen door de diëtist geadviseerd worden het FODMAB dieet te volgen. In pathologische biopten is een deficiëntie van het alfa actine in de binnenste circulaire laag van het gladde spierweefsel aangetoond. Mogelijk is er sprake van een neuromusculaire afwijking.

    Functionele diarree kan soms optreden zonder abdominale pijn, met symptomen van versnelde ontlastingspassage in de ochtend of soms na maaltijden, urgentie van defecatie, angst, uitgeputheid na defecatie en ontlasting die naar mate de dag vordert steeds papperiger wordt. Behandeling van functionele diarree bestaat uit loperamide, vaak gecombineerd met triglyceride antidepressiva clomipramine 10-30 mg. Atypische afwijkingen als een groot ontlastingsvolume, rectale bloedingen, voedingsstof deficiëntie en gewichtsverlies vereisen verder onderzoek.

    Functionele oesofagiale aandoeningen

    Een globus wordt gekenmerkt door een constante of intermitterende sensatie van een brok of een vreemd voorwerp in de keel. Vaak treedt het op tussen de maaltijden. Bij een globus is er afwezigheid van een pijnlijke zwelling of van dysfagie.

    Functionele gastro-duodenale aandoeningen

    Patiënten met een functionele dyspepsie hebben geen structurele abnormaliteit in het lichaam als oorzaak van de klachten. Symptomen zijn vaak aspecifiek zoals; misselijkheid, pijn in de bovenbuik, het gevoel van vol zitten en boeren. Een functionele dyspepsie wordt onderverdeeld in twee groepen:

    • Epigastrisch pijnsyndroom

    • Pijnsyndroom na de maaltijd

    Kenmerkend voor een epigastrisch pijnsyndroom is pijn gelegen in het centrum van de bovenbuik. Bij het pijnsyndroom na de maaltijd is er een niet pijnlijke sensatie in het centrum van de bovenbuik. Vooral bij het epigastrische pijnsyndroom staat pijn op de voorgrond. Voor de diagnose dient er onderzoek te worden gedaan naar Helicobacter pylori via serologie. Bij patiënten met alarmsymptomen of die een leeftijd boven de vijftig jaar hebben dient er verder onderzoek te worden verricht via een endoscopie. De behandeling van patiënten met epigastrisch pijnsyndroom of met een pijnsyndroom na de maaltijd is het krijgen van protonpompremmers of prokinetische stoffen. Ook leefstijladviezen worden mee gegeven zoals; vermindering van vet, koffie en alcohol en het stoppen met roken.

    Functioneel braken

    Functioneel braken komt niet vaak voor, maar chronische misselijkheid komt wel regelmatig voor bij patiënten met gastro-intestinale aandoeningen. Functioneel braken wordt gekenmerkt door frequent braken, ten minste een dag in de week. Er is afwezigheid van een eetstoornis of psychiatrische stress. Daarnaast is er afwezigheid van zelfgeïnduceerde of door medicijn gebruik overgeven. Ten slotte zijn er in de darm of in het centrale zenuwstelsel geen afwijkingen en metabole aandoeningen aanwezig. De behandeling van functioneel braken bestaat uit medicatie tegen misselijkheid en antidepressiva. Daarnaast kunnen veranderingen in het dieet de klachten verminderen.

    Gastro-intestinale bloedingen

    Hevige acute lage gastro-intestinale bloedingen in het maagdarmstelsel komen weinig voor en zijn kunnen optreden bij diverticulose, coloncarcinoom, ischemische colitis, ziekte van Crohn, divertikel van Meckel of angiodysplasie. Kleinere bloedingen kunnen het gevolg zijn van poliepen, aambeien of anale fissuren. Meestal stop een acute bloeding spontaan. Bij hemodynamisch onstabiele patiënten met continue bloeding kan reanimatie nodig zijn.

    De diagnose wordt bepaald aan de hand van de voorgeschiedenis, anamnese en rectaal toucher. Met proctoscopie kan in de endeldarm gekeken worden naar anorectale afwijkingen en aambeien. Met flexibele sigmoïdoscopie of colonoscopie kunnen inflammatoire darmziekten, kanker, ischemische colitis, diverticulaire afwijkingen en angiodysplasie worden opgespoord. Met angiografie kunnen vasculaire afwijkingen (angiodysplasie) in beeld gebracht worden.

    Geïsoleerde episoden van rectale bloedingen bij een patiënt jonger dan 45 jaar en geen colorectale kanker in de familiegeschiedenis wordt alleen een rectaal toucher en flexibele sigmoïdoscopie uitgevoerd, wegens de kleine kans op maligniteit.

    Patiënten met chronische gastro-intestinale bloedingen presenteren zich meestal met anemie en ijzerdeficiëntie. Maligniteit van de maag of rechtercolon, of coeliakie dienen uitgesloten te worden. Chronisch bloedverlies kan optreden met laesies in het maagdarmstelsel, die acute bloedingen veroorzaken. In ontwikkelingslanden zijn parasieten meestal de oorzaak van chronische bloedingen. Oesofagiale varices treden zelden als chronische bloeding op.

    De diagnose coeliakie kan verkregen met bovenste gastro-intestinale endoscopie, waarbij duodenale biopten worden afgenomen. Met colonscopie wordt van alle laesies en colonpoliepen een biopt genomen. Bij verdenking op colonkanker wordt een CT scan of CT colongrafie toegepast. Als de aandoening niet is aangetoond dienen de dunne darmen onderzocht te worden met capsule endoscopie. Behandeling van colonlaesies kan worden uitgevoerd met ballon-geassisteerde enteroscopie. Naast het behandelen van de bron, kan orale ijzersuppletie, intraveneuze infusie of bij terminale behandeling regelmatige transfusie gegeven worden.

    Er bestaan twee soorten van inflammatoire darmziekten (IBD), namelijk de ziekte van Crohn, waarbij elk gedeelte van de tractus gastro-intestinalis aangedaan kan zijn, en colitis ulcerosa, waarbij alleen het colon aangedaan kan zijn. Deze twee soorten overlappen deels op meerdere vlakken, zoals de klinische symptomen, histologische en radiologische afwijkingen. In 10% van de gevallen is zelfs geen onderscheid te maken en wordt de diagnose colitis van onbekende oorzaak en etiologie (Engels: colitis of undetermined type and etiology, CUTE) gesteld. Klinisch is het zeer belangrijk om het onderscheid te maken tussen de ziekte van Crohn en colitis ulcerosa, omdat de behandeling verschillend is.

    Naast de bovenstaande 2 soorten IBD bestaat er ook microscopische colitis, dat onderverdeeld kan worden in lymfocytische en collageencolitis. Bij microscopische colitis is er geen macroscopisch bewijs van ontsteking, bij IBD wel. De ziekte van Crohn kent een incidentie van 4-10 per 100.000 mensen op jaarbasis, met een prevalentie van 25-100 per 100.000 mensen op jaarbasis. Colitis ulcerosa kent een incidentie van 6-15 per 100.000 mensen op jaarbasis, met een prevalentie van 80-150 per 100.000 mensen op jaarbasis. CU komt dus vaker voor dan de ziekte van Crohn. Beide ziektes worden wereldwijd gezien, maar de hoogste incidentiegetallen zijn afkomstig uit Noord-Europa, Verenigd Koninkrijk en Noord-Amerika. Ras en etniciteit zijn van invloed op het voorkomen van CU en Crohn. Hierbij valt op dat Joodse mensen het vaakst aan IBD lijden. De precieze ontstaanswijze van IBD is onbekend maar er wordt aangenomen dat meerdere cofactoren aanwezig moeten zijn voor het ontstaan van IBD, zoals:

    • Genetische gevoeligheid (positieve familiegeschiedenis en bepaalde HLA genen)

    • Milieu (roken, NSAID-gebruik, hygiëne, voeding en psychologische factoren)

    • De intestinale flora (IBD-patiënten hebben meer bacteriën in de mucosa dan gezonde individuen)

    • Intestinale immuunsysteem

    Voordat de diagnose IBD kan worden gesteld, moeten een aantal andere ziektebeelden worden uitgesloten, namelijk:

    • Andere oorzaken van diarree.

    • Parasitaire ziekten (zoals amoebiasis) moet door middel van fecesmicroscopie worden uitgesloten bij patiënten die recent hebben gereisd.

    • In landen waar TB voorkomt, moet dat eerst worden uitgesloten.

    Ziekte van Crohn

    De ziekte kan voorkomen op kleine plekjes verspreid over de tractus digestivus (ook wel skip laesies) of het gehele colon aandoen (totale colitis). Ieder gedeelte van de tractus gastro-intestinalis kan worden aangedaan, maar meestal is de ziekte het ernstigst in het terminale ileum en het colon ascendens. Het mucosa van het aangedane stuk darm is verdikt en de darm heeft een vernauwd lumen. Diepe ulcera en fissuren zorgen voor een zogenaamd kinderkopjespatroon en duiden op een penetrerende ziekte. Een vroeg verschijnsel gezien bij colonoscopie is een ulceratie die lijkt op aften. Ook in de mond kunnen aften worden gezien. De ontsteking is transmuraal en gaat dus door alle lagen van de darm heen. Er wordt lymfehyperplasie en een toename van chronischeontstekingscellen gezien.

    Ook zijn in 50 tot 60% van de patiënten granulomen te zien. Klachten buiten de tractus digestivus die ook vaak voorkomen zijn gewrichtsklachten. Perifere artropathie kan worden onderverdeeld in type I en type II:

    1. De aanvallen zijn acuut, zelflimiterend binnen 10 weken en gaan gepaard met exacerbaties van de IBD.

    2. De artropathie is chronisch (maanden tot jaren), is onafhankelijk van IBD-activiteit en is meestal geassocieerd met een uveitis.

    Klinische symptomen zijn diarree, buikpijn en gewichtsverlies, vaak gepaard met algehele malaise, lethargie, anorexie, misselijkheid, braken en lichte koorts. In 15% van de gevallen zijn er geen klinische symptomen. Ongeveer 50% van de patiënten heeft een intestinale resectie nodig binnen vijf jaar na de diagnosestelling. Bij 25% van de patiënten zijn anale en perianale klachten de reden voor een bezoek aan de arts.

    Het belangrijkste doel van de behandeling is het tot rust brengen en rustig houden van de darmen (klinische remissie) en mucosale genezing bereiken zodat complicaties voorkomen kunnen worden, door middel van immunosuppressieve medicatie, zoals glucocorticoïden. Voor het behouden van remissie moet medicatie zoals azathioprine en methotrexaat worden genomen. Ongeveer 80% van de patiënten zal ergens in zijn ziektebeloop een operatie nodig hebben. Desalniettemin moet chirurgie zoveel mogelijk worden vermeden. Wanneer dan toch overgegaan moet worden op chirurgie, dan met minimale resectie van de darmen. Indicaties voor het overgaan op chirurgie bestaan uit:

    • Het falen van medicamenteuze therapie

    • Complicaties, zoals perforaties, abcessen of toxische dilatatie

    • Bij kinderen een groeiachterstand, ondanks medicamenteuze therapie

    • Perianale sepsis

    Indien mogelijk wordt een subtotale colectomie met een ileorectale anastomose uitgevoerd. Heeft dat nog niet genoeg effect dan wordt een panproctocolectomie met een ileostoma aan het einde uitgevoerd. Dit is het laatste redmiddel, omdat het hebben van een ileostoma vele problemen met zich mee brengt, zowel wat betreft infectiegevaar en mechanische problemen, als psychoseksuele- en psychosociale problemen.

    Colitis ulcerosa (CU)

    Alleen het colon wordt aangedaan. Het rectum kan aangedaan zijn (proctitis), maar ook tot en met het sigmoïd en het colon descendens (linker colitis), of het gehele colon (extensieve colitis). Sommige patiënten hebben naast extensieve colitis ook ontsteking van het terminale ileum. Macroscopisch ziet de mucosa er wat rood, ontstoken uit en bloed gemakkelijk. Later in de ziekte wordt er een zeer uitgebreide ulceratie gezien waarbij de omliggende mucosa lijkt op ontstoken poliepen. Microscopisch wordt een oppervlakkige ontsteking gezien. De mucosa laat een chronische ontstekingscelleninfiltraat zien in de lamina propria. Cryptabcessen en uitdunning van slijmbekerellen worden ook gezien. CU geeft dezelfde soort extra-gastro-intestinale klachten als de ziekte van Crohn.

    Klinische symptomen zijn diarree met bloed en slijm, met soms wat lokale abdominale discomfort (geen pijn). Daarnaast hebben patiënten last van algehele malaise, lethargie, anorexie en gewichtsverlies, alhoewel deze symptomen veel milder zijn dan bij de ziekte van Crohn.

    De ziekte kan mild, gemiddeld of ernstig zijn. De ziekte wordt gekenmerkt door exacerbaties afgewisseld met periodes van remissie. Ongeveer 10% van de patiënten heeft echter chronische klachten. De anus ziet er vrijwel altijd normaal uit bij patiënten met CU. Pas wanneer naar het rectum wordt gekeken ziet men afwijkingen. Proctitis wordt gekenmerkt door frequente passage van bloed en mucus, aandrang en tenesmus (het gevoel van incomplete defecatie). Normaal zijn hier weinig klinische symptomen bij bekend, maar de frequentie van de defecatie wordt als sterk invaliderend ervaren. Linker colitis of extensieve colitis kenmerkt zich door bloederige diarree, met wel 10 tot 20 keer defecatie per dag, waarbij de diarree ook ’s nachts voorkomt. Aandrang en incontinentie zijn hierbij de factoren die de patiënt sterk invalideren.

    Toxisch megacolon is een ernstige complicatie die geassocieerd is met ernstige colitis. Op de echo wordt een zeer gedilateerd colon (>6 centimeter) gezien, gevuld met gas en mucosale eilandjes. Als binnen 48 uur het toxisch megacolon niet is verdwenen, moet chirurgisch worden ingegrepen.

    Ook bij patiënten met verdenking op colitis ulcerosa moet eerst Clostridium difficile worden uitgesloten door middel van een feceskweek. Ook parasieten (amoebiasis) moeten op deze manier worden uitgesloten als mogelijke oorzaak van de klachten. Behandeling van CU bestaat voornamelijk uit een aminosalicylaat (5-ASA) preparaat.

    Een tweede stap is de toevoeging van orale prednisolon. Hierna kan worden overgegaan op intraveneuze toediening van steroïden. Alhoewel de behandeling van colitis ulcerosa voornamelijk medicamenteus is, wordt soms toch overgegaan op een chirurgische ingreep (kan levensreddend zijn, curatief en elimineert het risico op het ontstaan van kanker). De voornaamste indicatie voor chirurgie is een ernstige aanval die niet reageert op medicamenteuze therapie. Chirurgisch zijn er meerdere mogelijkheden:

    • Subtotale colectomie met een ileostoma en behoud van het rectum.

    • Proctectomie met een permanentie ileostoma.

    • Proctectomie met een ileo-anale anastomose. De pouch die hierbij wordt gecreëerd wil bij een derde van de patiënten echter ook nog gaan ontsteken, met klinische symptomen als diarree en bloeding tot gevolg.

    Een derde van de patiënten zal binnen twintig jaar na de diagnosestelling een colectomie ondergaan. Rond de 10% van de patiënten zal een totale colitis ontwikkelen, waartegenover een derde van alle patiënten slechts een enkele aanval van colitis ulcerosa zullen hebben gedurende hun hele leven. Bij patiënten met colitis ulcerosa of de ziekte van Crohn wordt een toegenomen incidentie gezien van ontwikkelende dysplasie met als gevolg colonkanker. Het risico op het ontstaan van dysplasie neemt toe naarmate de ziekte langer duurt en het colon meer onbehandelde mucosale inflammatie heeft doorstaan.

    Het colon en het rectum

    De dikke darmen beginnen bij het coecum, nabij de appendix. Het colon bestaat uit een opstijgend, transvers, dalend en een sigmoïd gedeelte, waarna het bij het rectum uitkomt. De spierlaag van het colon is opgebouwd uit een binnenste circulaire laag en een buitenste longitudinale laag. De buitenlaag is incompleet, wat ervoor zorgt dat er taenia coli ontstaan. Deze taenia geven de darmen het haustrae-patroon wat normaal in het colon wordt gezien.

    De mucosa van het colon is bekleed met epitheliale cellen met crypten maar zonder villi. Dit zorgt voor een gladde mucosa. Deze mucosa zit vol met slijmbekercellen.

    De bloedvoorziening wordt verzorgd door de superior en inferior vasa mesenterica. Het colon wordt voorzien door het enterische zenuwstelsel met zowel input uit parasympatische en sympathische gedeelte.

    Het rectum is ongeveer 12 centimeter lang. De binnenkant wordt gekenmerkt door drie circulaire spieren, die fysiologisch de rectale kleppen vormen. Deze vouwen kunnen bij sigmoïdoscopie goed worden gezien. Het anale kanaal bevat een interne en een externe sfincter. Normaliter is het rectum leeg. Feces wordt vanuit de darmen door middel van contracties het rectum in geduwd. Het gevoel van vol zitten, de wens naar het toilet te willen en de aandrang tot lozen van de rectuminhoud wordt steeds groter naarmate het rectum voller zit. Het gevoel vol te zitten begint bij een inhoud van 100 milliliter. Deze waarnemingen volgen op rectale contractie en relaxatie van de interne rectale sfincter.

    De voornaamste rol van de dikke darm is de absorptie van water en elektrolyten samen met het voortduwen van de darminhoud van het coecum tot het anorectale gebied. Peristaltiek wordt gestimuleerd door de secretie van serotonine afkomstig uit neuro-endocriene cellen als reactie op verwijding van het darmlumen.

    Obstipatie is een veel voorkomend symptoom, vooral bij vrouwen en ouderen. Obstipatie wordt gedefinieerd als het hebben van twee of meer van de volgende symptomen voor ten minste twaalf weken:

    • Weinig defecatie (<3 keer per week)

    • Te vol zitten meer dan 25 procent van de tijd

    • Passage van harde ontlasting

    • Incomplete lozing

    • Het gevoel van anorectale blokkade

    Dit is een erg ruim genomen definitie, aangezien een op de vijf van de algemene populatie volgens deze definitie aan obstipatie zou lijden. De oorzaken zijn de volgende:

    • Algemeen (zwangerschap, onvoldoende intake van vezels en immobiliteit)

    • Metabool/endocrien (Diabetes Mellitus, hypercalciëmie, hypothyreoïdie en porfyrie)

    • Functioneel (PDS, idiopathische langzame transitie)

    • Medicatie (opiaten, calciumkanaalblokkers, antidepressiva en ijzerinname)

    • Neurologisch (ruggenmerglaesies en de ziekte van Parkinson)

    • Psychologisch (depressie, anorexia nervosa, teruggedrongen drang tot defecatie)

    • Gastro-intestinaal (obstructie en pseudo-obstructie, ziekte van het colon en pijnlijke condities van de anus zoals anale fissuren)

    • Aandoening van de defecatie (rectale prolaps, een grote rectocele of een megarectum)

    Obstipatie kan grofweg in drie groepen worden onderverdeeld:

    1. Normale transitie obstipatie (59%): Ontlasting passeert de darm met een normale snelheid en de hoeveelheid ontlasting is ook normaal. Toch ervaren patiënten obstipatie. De oorzaak hiervoor ligt meestal aan het feit dat patiënten zichzelf voorhouden moeilijkheden te hebben met defecatie. Hierdoor komen patiënten met klachten als buikpijn en een opgeblazen gevoel met veel lucht naar de arts. Normale transitie obstipatie kan worden onderscheiden van langzame transitie obstipatie door het uitvoeren van een markerstudie van de darmpassage.

    2. Aandoening van de defecatie (25%): Een paradoxale contractie van de musculus puborectalis en de externe anale sfincter kunnen evacuatie van ontlasting tegenhouden. Deze paradoxale contractie komt vooral door dysfunctie van de anale sfincter en de bekkenbodemspieren. Denk hierbij aan een anterieure rectocele (zwakheid van het rectovaginale septum) of een intussusceptie.

    3. Langzame transitie obstipatie (13%): Deze vorm van obstipatie komt vooral voor bij jonge vrouwen die heel weinig defecatie lozen, meestal minder dan één keer per week. Deze aandoening begint meestal rond de puberteit en leidt tot veel lucht in de buik, buikpijn en discomfort.

    Behandeling van obstipatie

    Elke onderliggende oorzaak van de obstipatie moet worden behandeld. Bij elke patiënt met normale- en langzame transitie obstipatie moet de focus liggen op een goede balans in het dieet vinden met meer vezels en meer vocht inname. Het gebruik van laxantia moet worden beperkt tot de zeer ernstige gevallen. Patiënten met een aandoening van de defecatie moeten doorverwezen worden naar een specialist omdat chirurgie noodzakelijk kan zijn (bijvoorbeeld bij een interne anale mucosale intussusceptie).

    Megacolon

    Deze term beschrijft verscheidene aangeboren en verkregen afwijkingen waarbij het colon is gedilateerd. In de meeste gevallen gaat het om een secundair (verkregen) megacolon door chronische obstipatie. Bij jonge patiënten moet altijd de ziekte van Hirschprung worden uitgesloten. Bij de ziekte van Hirschprung bestaat er een deel van het rectum zonder ganglia, waardoor obstipatie en subacute obstructie ontstaat.

    Fecesincontinentie

    Van de gezonde 65+ populatie ervaart 7% een vorm van incontinentie. Incontinentie is het geval wanneer de intrarectale druk de intra-anale druk overstijgt, en kan worden onderverdeeld in minor (lucht en dunne ontlasting niet binnen kunnen houden) en major (frequente en niet aangekondigde lozing van ontlasting met een normale consistentie) incontinentie.

    Ischemische ziekte van het colon (ischemische colitis)

    Ischemische colitis openbaart zich als een plotseling begin van ernstige buikpijn samen met de passage van rood bloed via het rectum, met of zonder diarree. De oorzaak hiervan is occlusie van takken van de arteria mesenterica superior of van de arteria mesenterica inferior, vaak bij de oudere populatie. De flexura splenica is vanwege zijn bloedvoorziening de plek waar occlusie het vaakst voorkomt. De meeste patiënten herstellen met symptomatische behandeling. Sommige patiënten laten progressieve tekenen van peritonitis en perforatie zien waarvoor meteen chirurgie nodig is.

    Pneumatosis cystoides intestinalis

    Dit is een zeldzame aandoening waarbij vele met gas gevulde cystes worden gevonden in de submucosa van de darmen, vooral in het colon. De oorzaak hiervan is onbekend. Behandeling is meestal niet nodig maar continue zuurstoftherapie zal helpen de met stikstof gevulde cystes (sneller) te laten verdwijnen.

    Diverticulaire ziekte

    Divertikels worden frequent gevonden in het colon, en worden gezien bij 50 procent van de populatie van 50 jaar en ouder. Deze divertikels bevinden zich het vaakst in het sigmoïd, maar kunnen zich over het gehele colon bevinden.

    • Diverticulose: De aanwezigheid van divertikels

    • Diverticulitis: Ontsteking van deze divertikels. Dit gebeurt wanneer er feces rond de opening van een divertikel blijft zitten waardoor bacteriën de kans krijgen zich te vermeerderen waarna ontsteking van de divertikels ontstaat. 95% van de patiënten is asymptomatisch. Wanneer diverticulitis wordt gevonden bij colonoscopie wordt aangeraden de vezelinname te verhogen.

    • Diverticulaire colitis: Ontsteking van de vouwen rondom de gebieden waar de divertikels zich bevinden.

    Omdat dit lastige en verwarrende termen zijn en omdat vaak niet goed aan te wijzen is waar de ontsteking zich precies bevindt, wordt voor de onderste twee definities de term diverticulaire ziektes gebruikt.

    Acute diverticulitis

    Dit gebeurt vooral in het sigmoïd. Hierbij heeft de patiënt ernstige pijn in de linker fossa iliaca die vaak gepaard gaat met koorts en obstipatie. De symptomen zijn hetzelfde als die van acute appendicitis behalve dat de pijn zich aan de linkerzijde bevindt. Patiënten hebben meestal genoeg aan behandeling met orale antibiotica maar soms (bijvoorbeeld wanneer er sprake is van comorbiditeit) worden intraveneus vocht en antibiotica toegediend. Mogelijke complicaties:

    • Perforaties. Hiervan is chirurgie noodzakelijk.

    • Vorming van fistels in de blaas of vagina.

    • Intestinale obstructie

    • Massale bloedingen

    • Mucosale ontsteking in gebieden waar de divertikels zich bevinden kan het beeld van segmentale colitis geven, waardoor soms de diagnose ziekte van Crohn onterecht wordt gesteld.

    Pruritus ani

    Pruritus betekent jeuk. Jeuk aan de anus komt vaak voor. Meestal komt dit verschijnsel door de aanwezigheid van aambeien of overactieve zweetklieren ter plekke. Behandeling bestaat uit een goede en strikte toilethygiëne en het droog houden van het gebied. Ook kan de jeuk komen door schimmelinfecties (candidiasis) en perianaal eczeem.

    Aambeien

    Aambeien veroorzaken meestal rectale bloeding, discomfort en pruritus ani (zie hierboven). Patiënten met aambeien komen vaak naar de arts omdat ze felrood bloed op hun toiletpapier en bloed rondom hun ontlasting hebben zien zitten. De diagnose wordt gesteld na inspectie, rectale examinering en proctoscopie. Er zijn verschillende klassen:

    • Eerste klas: Intern

    • Tweede klas: Naar buiten komend

    • Derde klas: Zich buiten de anus bevindend

    Wanneer de symptomen mild zijn, worden de aambeien niet behandeld. Wanneer de symptomen echter heviger zijn kan worden gekozen voor een ligatie met een rubberen band of chirurgie.

    Anale fissuren

    Een anale fissuur is een scheur in het gevoelige met huid beklede onderste anale kanaal distaal van de linea dentata welke pijn geeft bij ontlasting. De diagnose kan meestal gesteld worden op basis van de voorgeschiedenis van de patiënt en wordt bevestigd door middel van perianale inspectie. Hierbij is rectale examinering vaak niet mogelijk vanwege de pijn en spasmes van de sfincter. De behandeling bestaat uit een lokale verdovende gel in combinatie met medicatie om de ontlasting zachter te maken.

    Fistulae in ano en anorectale abcessen

    De fistels die rondom de anus aanwezig zijn presenteren zich vaak als abcessen. Deze abcessen genezen pas wanneer er een incisie wordt gemaakt gevolgd door drainage met antibiotica. Zie figuur 6.42 op bladzijde 287 voor een overzicht van de verschillende variaties van anale fissuren die worden gezien in de praktijk.

    Rectale prolaps, intussusceptie en solitaire rectale ulcer syndroom (SRUS)

    Rectale prolaps vormt hierbij de eerste pathologie waarna intussusceptie en SRUS kunnen ontstaan. Uitlokkende factoren voor bovenstaande aandoeningen zijn obstipatie en chronische overrekking van het recto-anale gebied. SRUS doet meestal de anterior wand van het rectum aan ongeveer 13 centimeter van de overgang naar de anus af.

    Colonpoliepen en polyposis syndromen

    Een colonpoliep is een abnormale groei van weefsel afkomstig van de mucosa van de colonwand. Deze poliepen kunnen sterk variëren in afmeting (van enkele millimeters tot flink wat centimeters) en kunnen meervoudig, steelvormig, vastzittend (sessiel) of plat zijn. Hierbij zijn platte poliepen het moeilijkst te zien tijdens colonoscopie, en deze vorm wordt dus ook het vaakst gemist. Adenomen zijn de voorlopers van dikke darm kanker. Een adenoom is een goedaardige dysplastische tumor van zuilvormige cellen of klierweefsel.

    Sporadisch adenoom

    De meerderheid is sporadisch en niet erfelijk. Veel sporadische adenomen zullen niet tot een maligniteit uitgroeien tijdens het leven van de patiënt. De waarschijnlijkheid dat er een adenoom wordt gevonden neemt toe met de leeftijd, waarbij ze zelden voor de leeftijd van 30 jaar worden gezien bij patiënten. De verwijdering van poliepen en adenomen tijdens colonoscopie en verdere vervolging van de patiënt verkleinen het risico op het krijgen van kanker met ongeveer 80%. Adenomen in het rectum en het sigmoïd geven vaak bloedverlies waarmee de patiënt naar de arts komt. Meer proximaal gelegen adenomen zijn meestal asymptomatisch. Wanneer er een adenoom is gevonden en weggehaald bij een patiënt, vindt er uiteraard vervolg onderzoek plaats. De frequentie hiervan ligt aan de afmeting en de hoeveelheid van de adenomen.

    Erfelijke polyposis syndromen

    Ongeveer 5% van de coloncarcinomen heeft een goed gedefinieerde single gene basis:

    • Familiaire adenomateuze polyposis (FAP): Dit is een autosomaal dominante aandoening die wordt veroorzaakt door een kiemlijn mutatie van het APC gen gelokaliseerd op chromosoom 5q21-q22, waarbij al meer dan 825 verschillende mutaties zijn geïdentificeerd. Penetrantie van de aandoening is gelijk aan 100 procent. FAP wordt gekenmerkt door de aanwezigheid van honderden tot duizenden colorectale en duodenale adenomen.

      Deze adenomen beginnen zich te ontwikkelen wanneer de patiënt rond de 16 jaar is. Colorectale kanker wordt meestal al gevormd op de leeftijd van 39 jaar. Hierbij is screening van familieleden erg belangrijk en essentieel, meestal vanaf 12-jarige leeftijd. Aangedane familieleden die vroeg worden gediagnosticeerd wordt meestal geadviseerd een profylactische colectomie te ondergaan voor de leeftijd van 20 jaar wordt bereikt. Naast poliepen in het colon worden bij FAP ook poliepen gezien in de proximale maag en duodenum. Deze duodenale adenomen zijn de meest voorkomende doodsoorzaak van patiënten met FAP die een colectomie hebben ondergaan.

    • Zwakke FAP: Deze diagnose wordt vaak gemist omdat patiënten zich pas later presenten, meestal pas rond hun 44e waarbij minder poliepen worden gezien dan bij FAP. Deze poliepen hebben de neiging zich meer aan de rechter kant van het colon te bevinden dan aan de linker kant.

    • MYH-geassocieerde polyposis (MUTYH polyposis): Deze vorm van polyposis is een autosomaal recessief erfelijk syndroom waarbij multipele colorectale adenomen en kankers worden gevormd. Het MYH gen is een base excisie reparatie gen dat oxidatieve DNA schade herstelt.

    • Hereditaire non-polyposis colon kanker (HNPCC)/Syndroom van Lynch: Het syndroom van Lynch is autosomaal dominant overerfelijk. Dit syndroom wordt ‘non polyposis’ genoemd om het te kunnen onderscheiden van FAP. Ook al heet het non polyposis, er worden wel degelijk poliepen in het colon gevormd die zich snel kunnen ontwikkelen tot colon kanker. Een op de 5000 mensen heeft HNPCC. Deze ziekte wordt veroorzaakt door een mutatie in een van de DNA mismatch repair genen. De ziekte begint meestal rond 40- tot 50 jarige leeftijd. Hierbij hebben de poliepen een voorkeur zich te vormen in het rechter colon, in tegenstelling tot sporadische adenomen. In tegenstelling tot bij FAP (100%) is het risico op vorming van dikke darm kanker bij het syndroom van Lynch 70-80%. De kans op ontwikkeling van andere vormen van kanker is groter (van de maag, blaas, huid, hersenen en eierstokken bijvoorbeeld).

    • Syndroom van Turcot: Dit syndroom bestaat uit FAP of HNPCC in combinatie met hersentumoren.

    • Syndroom van Gardner: Naast FAP worden bij dit syndroom desmoïd tumoren, osteomen van de schedel en andere tumoren gezien.

    • Hamartomateuze poliepen zijn meestal groot en steelvormig.

    Colorectale carcinomen

    Van alle patiënten met colorectale kanker is 53,5 % man en 36,7 % vrouw, waarbij de diagnose gemiddeld rond 60- tot 65-jarige leeftijd wordt gesteld. Tijdens diagnosestelling heeft ongeveer 20 % van de patiënten al metastasen. Colorectale kanker bestaat meestal uit een poliepmassa met ulceratie die direct infiltreert door de darmwand heen. Meestal gaan lymfe- en bloedvaten hier ook mee gepaard waardoor verspreiding nog sneller gebeurt. Meestal zaait colorectale kanker uit naar de lever en de longen. Het betreft dan vooral adenocarcinomen.

    Symptomen die duiden op colorectale kanker zijn:

    • Verandering in het ontlastingspatroon

    • Lossere en meer frequente ontlasting

    • Rectale bloeding

    • Tenesmus

    • Symptomen van anemie

    Hierbij is het belangrijk te weten dat een patiënt die naar je toe komt met obstipatie en harde ontlasting, geen verhoogd risico op het ontstaan van colorectale kanker heeft. Ongeveer 80% van de patiënten met colorectale kanker ondergaan chirurgie, meestal laparoscopisch. Hierbij overleeft minder dan de helft van de 80% vijf jaar na de chirurgische ingreep. De keuze van chirurgische ingreep hangt af van de locatie waar de tumor zich bevindt en of er metastasen aanwezig/gevonden zijn. De TNM classificatie wordt gebruikt voor stadiëring van colorectale kanker. Behandelmogelijkheden zijn:

    • Totale mesorectale excisie (TME): Deze vorm van chirurgie wordt toegepast bij rectale kankers waarbij ook het gehele mesorectale weefsel rondom de tumor wordt weggenomen. Hierna wordt een lage rectale anastomose aangelegd.

    • Segmentale resectie: Met verwijdering van drainerende lymfeknopen zo ver mogelijk wordt toegepast bij kankers elders in het colon.

    • Lokale transanale chirurgie: Deze vorm van chirurgie wordt vaak gebruikt voor vroeg gedetecteerde oppervlakkig gelegen rectale kankers.

    • Chirurgische of ablatieve behandeling van lever- en/of long metastasen: Deze vorm van behandeling verlengt de levensduur voor patiënten maar wordt alleen toegepast als de patiënt fit genoeg is om de ingreep te ondergaan.

    • Radiotherapie: Niet zinvol voor kankers die zich proximaal bij het rectum bevinden omdat het op die plek niet mogelijk is voldoende straling te geven zonder grote toxiciteit voor omliggende weefsels.

    • Adjuvante postoperatieve chemotherapie: Verbetert ziektevrije overleving bij sommige stadia van de kanker.

    Alle patiënten die een chirurgische ingreep ondergaan voor colorectale kanker moeten daarvoor een totale colonoscopie ondergaan om eventuele andere laesies op te merken. Post chirurgisch moet jaarlijks, tot drie jaar na de chirurgische ingreep, een CT-scan worden gemaakt van de thorax en het abdomen om operabele lever- en longmetastases zo vroeg mogelijk te detecteren.

    Diarree

    Diarree is een veelvoorkomend klinisch probleem. Organische oorzaken, met een ontlastingsgewicht > 250 g/dag, worden onderscheiden van functionele oorzaken. Plotseling ontstane darmproblemen met pijnlijke buikkrampen en koorts zijn kenmerkend voor een infectieuze oorzaak. De passage van bleke aanvalsgewijze vloeiende ontlasting gaat vaak gepaard met verminderde eetlust, gewichtsverlies en steatorroe. Nachtelijke darmklachten met urgentie hebben vaak een organische oorzaak. Passage van klein-volume ontlasting past vaak bij een functionele oorzaak.

    De darmmucosa fungeert als een semipermeabel membraan en laat veel water in het darmlumen als er veel niet-geabsorbeerde hypertonische substanties in het lumen aanwezig zijn, leidend tot osmotische diarree. Dit kan optreden zodra de patiënt een niet-absorbeerbare substantie als magnesium heeft geslikt, de patiënt zelf klachten heeft van malabsorptie of een absorptie defect als disacharide deficiëntie of glucose-galactose malabsorptie.

    Bij secretoire diarree is er sprake van zowel actieve intestinale secretie van water en elektrolyten en verminderde absorptie. Secretoire diarree wordt meestal veroorzaakt door enterotoxinen (cholera, E. Coli of C. Difficile), hormonen (vasoactief intestinaal peptide), galzouten of vetzuren door ileale resectie of door laxantia. Bij inflammatoire diarree (Shigella, ulceratieve colitis en ziekte van Crohn) is er sprake van mucosale schade, met als gevolg water- en bloedverlies, gepaard met een absorptie defect. Diarree bij diabetes, post-vagotomie (N. X) en hyperthyroïdie is er sprake van abnormale motiliteit van de dunne darmen door mogelijk bacteriële overgroei. Prikkelbaar darmsyndroom, colorectale kanker, diverticulose en fecale inklemming kunnen gepaard gaan met matige diarree klachten.

    Acute diarree, mogelijk gepaard met koorts, abdominale pijn en braken, treedt vaak op en behoeft meestal geen verder onderzoek of beleid. Diarree door een virusinfectie treedt op binnen 24 tot 48 uur. Reizigersdiarree kan 2 tot 5 dagen aanhouden. Bij jonge kinderen of ouderen kan dehydratie een gevaarlijk gevolg zijn. Onderzoek wordt verricht als de diarree langer dan een week aanhoudt, waarbij de ontlasting in een kweek wordt onderzocht op eieren of cysten van parasieten en toxine van C. Difficile. Eventueel kan sigmoïdoscopie of een rectale biopsie worden uitgevoerd. Chronische diarree behoeft altijd verder onderzoek. Wanneer ontlastingkweken negatief zijn en dunne darmziekten niet waarschijnlijk zijn, kan colonoscopie worden uitgevoerd.

    Optioneel kan een speciale orale rehydratie oplossing van sodium chloride en glucosepoeder worden gegeven. Codeïne fosfaat 30 mg viermaal per dag of loperamide 2 mg driemaal per dag wordt als anti-diarree middel voorgeschreven. Soms wordt ook antibiotica voorgeschreven. Pseudo-membraneuze colitis kan zich ontwikkelen bij gebruik van antibiotica door bacteriële overgroei van C. difficile. Diarree treedt op een aantal dagen na gebruik tot wel zes weken na het stoppen met gebruik.

    Galzuur malabsorptie treedt op wanneer het terminale ileum galzuren niet kan reabsorberen en gaat gepaard met verminderde absorptie van water en elektrolyten en een verhoogde secretie met verhoogde colonmotiliteit. Dit wordt vaak verkeerd gediagnosticeerd als prikkelbaar darmsyndroom. Dit treedt meestal op bij patiënten die niet reageren op de standaardtherapie, met de ziekte van Crohn of microscopische colitis. De diagnose wordt bepaald met een SeHCAT test, waarbij radio-gelabeld galzuur wordt berekend in 7 dagen. Behandeling bestaat uit cholestyramine, die galzuren in het colon deactiveert.

    Kunstmatige diarree kan optreden na een bezoek aan de gastro-enterologische kliniek. Vaak zijn dit patiënten met een eetstoornis die een hoge dosis purgeermiddelen of laxantia gebruiken. Dit uit zich in een diarreevolume van > 1L per dag en een laag serum kalium.

    Patiënten met een HIV infectie hebben vaak ook last van diarree, maar de pathogenese is nog onbekend. De behandeling is symptomatisch.

    Acute buikpijn

    Pijn bij een acute buik kan constant aanwezig zijn of koliekpijn geven. Als er sprake is van een ontsteking is er koorts, tachycardie en een verhoging van het aantal witte bloedcellen. Als deze waarden allemaal normaal zijn moet er gedacht worden aan een andere oorzaak, zoals een aneurysma van de aorta of een musculoskeletale aandoening. Koliekpijn kan het gevolg zijn van een obstructie in de darm, galwegen, het urogenitale stelsel of in de uterus. Differentiaal diagnose van plotselinge pijn in de buik:

    • Perforatie

    • Ruptuur

    • Torsie

    • Acute pancreatitis

    Differentiaal diagnose van rugpijn:

    • Pancreatitis

    • Aneurysma van de aorta

    • Nieraandoeningen

    Bij peritonitis ontstaat de pijn meer geleidelijk en wordt het erger bij bewegen. Als braken continu aanwezig is suggereert het een obstructieve laesie in de darm.

    Diagnostiek

    Bij lichamelijk onderzoek moet er worden gekeken naar de algehele conditie van de patiënt. Koorts en toename van het aantal witte bloedcellen komt voor bij een acute ontsteking. Bij inspectie van de buik wordt er gekeken of er zich littekens of massa’s in de buik bevinden. Bij palpatie wordt de gevoeligheid van de buik getest en wordt er gelet op de aan- of afwezigheid van spasmen van de buikholte, die een peritonitis induceren. Daarnaast wordt er geluisterd naar de darmen. Een stille buik duidt op een peritonitis. Als er naast buikpijn ook diarreeklachten zijn moet een feceskweek worden gedaan, voor de volgende bacteriën: Camplyobacter, Salmonella, Shigella en Clostridium difficile. Hoge amylasewaarden induceren een acute pancreatitis. Uiteraard moet ook een zwangerschapstest worden gedaan. Een röntgenfoto is zinvol om lucht onder het diafragma aan te tonen, wat duidt op een perforatie. Een CT-scan is het meest nauwkeurige onderzoek bij noodsituaties en voorkomt veel overbodige buikoperaties (laparotomie).

    Blindedarmontsteking

    Een acute appendicitis moet altijd in de differentiaal diagnose worden overwogen als de appendix nog niet is verwijderd. Een acute appendicitis ontstaat meestal als in het lumen van de appendix een obstructie ontstaat met een fecoliet (darmsteen die bestaat uit ontlasting). In andere gevallen ontstaat een appendicitis door een acute ontsteking. Op het moment dat de acute ontsteking is opgetreden en de appendix is nog niet verwijderd, ontstaat er een perforatie waarbij er lokaal abcesvorming ontstaat.

    Kliniek

    De meeste patiënten met een blindedarmontsteking hebben in eerste instantie vage pijn in het midden van het abdomen. Vervolgens wordt de pijn bij de rechter fossa iliaca gelokaliseerd. Misselijkheid, braken, anorexia en diarree kunnen erbij optreden. De buik is extreem gevoelig bij de rechter fossa iliaca. Een stijging van het aantal witte bloedcellen, CRP en de bezinking ondersteunen de diagnose. Een echo kan een massa en ontstoken appendix aantonen.

    Differentiaal diagnose

    De differentiaal diagnose bestaat uit een aspecifieke mesenterische lymfadenitis, acute terminale ileitis (door de ziekte van Crohn), gynaecologische oorzaken, ontstoken Meckel’s-divertikel of een functionele darmziekte.

    Behandeling

    De appendix wordt verwijderd via laparoscopie. Als er sprake is van een ontstoken appendix worden ook intraveneuze vloeistof en antibiotica gegeven.

    Buitenbaarmoederlijke zwangerschap (EUG)

    Patiënten met een EUG, extra uterine graviditeit, presenteren zich terugkerende lage buikpijn, geassocieerd met vaginale bloeding. De meeste baarmoederlijke zwangerschappen bevinden zich in de eileider.

    Algehele peritonitis

    Een algehele peritonitis ontstaat door irritatie van het peritoneum door een infectie (geperforeerde appendix) of door chemische irritatie door een lekkage van inhoud van de darm (geperforeerde ulcus). In een latere fase kan hier bovenop nog een infectie optreden zoals E. Colli en bacteroïdes. Bij een perforatie ontstaat er plotselinge hevige buikpijn, gevolg door verminderd bewustzijn en een shock. Als er op een röntgenfoto vrij lucht onder het diafragma wordt aangetoond en serumamylase wordt getest kan de diagnose acute pancreatitis worden gesteld. Als er bij een peritonitis niet snel wordt gehandeld kan het leiden tot het falen van meerdere organen. Hierbij kan abcesvorming optreden, wat kan worden aangetoond middels een echo of CT-scan.

    Obstructie

    De meest voorkomende oorzaak van een obstructie komt door een mechanische oorzaak. Als door deze obstructie de darm niet goed kan functioneren, kan het leiden tot een paralytische ileus. Een patiënt met een obstructie heeft klachten als koliekpijn, braken en obstipatie. Bij lichamelijk onderzoek is er een opgezette buik te zien en zijn er toegenomen darmgeluiden te horen. Als er sprake is van een toegenomen temperatuur, een verhoogde pols, toename van de pijn en een verhoging van het aantal witte bloedcellen moet er snel worden gehandeld en als het mogelijk is laparotomie worden uitgevoerd. De differentiaal diagnose voor patiënten met acute en progressieve buikpijn bestaat onder andere nog meer uit: een intra-abdominaal trauma, postoperatieve oorzaak, intra-abdominale sepsis, pneumonie, metabolische oorzaak of door medicijngebruik (opiaten).

    Wat zijn mogelijke hematologische ziekten? - Chapter 16

    Wat zijn mogelijke hematologische ziekten? - Chapter 16

    Inleiding

    Bloed bestaat uit rode bloedcellen, witte bloedcellen, bloedplaatjes en plasma. De cellen zijn opgelost in het plasma. Plasma is de vloeistofcomponent van het bloed, dat oplosbaar fibrinogeen bevat. Serum blijft over wanneer een fibrine stolsel is ontstaan. Serum is dus bloedplasma zonder de stollingseiwitten.

    Het hematopoietische systeem bestaat uit het beenmerg, de lever, de milt, de lymfeklieren en de thymus. In kinderen vertoont bijna elk bot hematopoiese, maar bij volwassen komt dit alleen voor in het centrale skelet en het proximale eind van lange botten. Extramedullaire hematopoiese beschrijft hematopoiese in lever en milt. Alle bloedcellen ontstaan uit pluripotente stamcellen, deze ondergaan zelfvernieuwing en proliferatie en differentiatie. Uit de pluripotente stamcel ontstaan 2 belangrijke cellijnen: de myeloïde cellijn (vorming van Colony Forming Units (CFU’s) en uiteindelijk tot granulocyten, trombocyten, erythrocyten, monocyten) en de lymfoïde cellijn (leidt tot B- en T-cellen).

    Hematopoietische groeifactoren zijn glycoproteïnen die differentiatie en proliferatie van voorlopercellen reguleren en de functie van bloedcellen ondersteunen. Voorbeelden zijn erythropoietine (EPO), IL-3, IL-6, IL-11 en thyroxinekinasen. Colony-stimulating factors (CSF’s) reguleren de ontwikkeling van een celtype uit een voorlopercel. Zo ontwikkelt een CFU zich onder invloed van een CSF zich tot bepaald type cel. Deze groeifactoren worden uitgescheiden door het beenmerg en de bloedcellen zelf. Stamcellen uit het beenmerg kunnen zich ontwikkelen tot alle soorten organen en dit wordt stamcel plasticiteit genoemd. Sommige groeifactoren worden als behandeling gebruikt (CSF na chemotherapie en EPO bij anemie). Aandoeningen van stamcellen zijn onder andere leukemie, polycythaemia vera en aplastische anemie.

    Hoeveelheid en grootte van bloedcellen en -plaatjes kan in een laboratoriumtest worden bepaald. Een uitstrijkje van het bloed kan onder de microscoop worden bekeken. Verschillende afgeleide waarden worden gebruikt bij diagnostiek van het bloed:

    • Mean Corpuscular Volume (MCV): Dit is een maat voor anemie op basis van het gemiddelde volume van erythrocyten.

    • Red cell distribution width (RDW):  De RDW meet de variatie in volume; het is verhoogd bij ijzertekort.

    • Aantal witte bloedcellen (WBC, WCC)

    • Reticulocyten: Dit zijn het aantal jonge rode bloedcellen. Het is verhoogd bij bloedingen en verlaagd bij beenmergfalen.

    • Bezinking Snelheid Erythrocyten (BSE): Dit is een maatstaf voor de acute fase respons, die verhoogd is bij een immunologisch proces, infectie, ischemie, maligniteit en bij trauma.

    • Plasma viscositeit: Dit is een alternatief voor BSE.

    • C-reactief proteïne (CRP): Dit is een acute-fase eiwit en wordt gebruikt als maatstaf voor inflammatie.

    De erythrocyt

    De rode bloedcel ontwikkelt zich van een pro-normoblast, via een normoblast en reticulocyt tot een erythrocyt. De celkern verdwijnt bij de overgang van normoblast naar reticulocyt. Normoblasten komen alleen voor bij extramedullaire hematopoiese en bepaalde aandoeningen. Erythropoietine reguleert erythropoiese en wordt geproduceerd in de nieren (90%) en in de lever (10%). Synthese is afhankelijk van het weefsel zuurstofgehalte en wordt verhoogd bij hypoxie. Erythropoetine stimuleert ontwikkeling van precursorcellen tot erythrocyten. Hemoglobine brengt zuurstof naar weefsels en brengt koolstofdioxide terug naar de longen. Een normaal hemoglobine molecuul (HbA) bestaat uit 2 alfa- en 2 bètaketens. Deze ketens kunnen elk een zuurstofmolecuul binden. Zo kan 1 hemoglobinemolecuul 4 zuurstofmoleculen transporteren. HbA bedraagt 97% van alle hemoglobine, HbA2 en HbF komen in kleine hoeveelheden voor. In de mitochondria van rode bloedcellen vindt hemoglobinesynthese plaats. De configuratie van de ketens verandert bij opname en afgifte van zuurstof, zodat een respectievelijk verhoogde of verlaagde affiniteit voor zuurstof ontstaat. Op deze manier heeft hemoglobine een hoge affiniteit voor zuurstof in de longen, waar het zuurstof moet opnemen en een lage affiniteit in weefsels, waar het zuurstof moet afgeven. Aanwezigheid van CO2 in het bloed verlaagt de affiniteit van hemoglobine voor zuurstof (Bohr-effect). Binding van O2 aan hemoglobine verlaagt de affiniteit voor CO2 (Haldane-effect). Daarnaast zorgen een verhoogde lichaamstemperatuur, de aanwezigheid van 2,3-BPG en een lagere barometrische druk (in de bergen) voor minder opname van O2 door hemoglobine.

    Anemie

    Anemie ontstaat bij een verlaagde hoeveelheid hemoglobine en bij veranderingen in plasma- en rodebloedcelvolume. Er bestaan drie typen anemie:

    • Hypochrome microcytische anemie (laag MCV), bijvoorbeeld ijzergebreksanemie, thalassemie, anemie bij chronische ziekte, sideroblastische anemie.

    • Normochrome normocytische anemie (normaal MCV), bijvoorbeeld acuut bloedverlies, anemie bij chronische ziekte, chronische nierziekte, endocriene ziekte, auto-immuun reumatische aandoeningen, beenmerginfiltratie, hemolytische anemie.

    • Macrocytische anemie (hoog MCV), bijvoorbeeld door alcoholmisbruik, vitamine-B12- of foliumzuurdeficiëntie, een verhoogd aantal reticulocyten, leverziekte, hypothyroïdie.

    Patiënten met anemie kunnen asymptomatisch zijn, vooral in de chronische setting. Snel bloedverlies leidt wel tot acute symptomen, zoals moeheid, hoofdpijn, flauwvallen, kortademigheid, angina, claudicatio intermittens en hartkloppingen. Bleekheid, tachycardie, systolisch hartgeruis en hartfalen kunnen bij lichamelijk onderzoek worden gevonden. Rodebloedcelwaarden, WBC, bloedplaatjes, reticulocyten en een bloed uitstrijkje kunnen belangrijke diagnostische aanwijzingen geven. Afwijkingen in het bloed uitstrijkje kunnen met een beenmergbiopsie worden bevestigd.

    IJzerdeficiëntie valt onder de microcytische anemie en is de meest voorkomende vorm van anemie (30% van de wereldpopulatie). IJzer komt het meest voor in Fe3+-vorm, maar dit kan lastig worden geabsorbeerd in vergelijking met Fe2+. Naast ijzerdeficiëntie vallen sideroblastische anemie, anemie bij chronische ziekte en thalassemie onder microcytische anemie.

    Normocytische anemie kan voorkomen bij anemie bij chronische ziekte, endocriene aandoeningen (hypopituitarisme, hypothyroïdie, hypoadrenalisme) en bij sommige hematologische aandoeningen (aplastische anemie, hemolytische anemie). Ook direct na bloedverlies treedt een normocytische anemie op.

    Macrocytische anemie wordt ingedeeld in megaloblastische en niet-megaloblastische anemie. Megaloblastische anemie wordt gekenmerkt door de aanwezigheid van megaloblasten in het beenmerg. Megaloblasten zijn erythroblasten met een vertraagde maturatie vanwege DNA-defecten. Megaloblasten zijn groot en hebben grote nuclei.

    Aplastische anemie

    Aplastische anemie wordt gedefinieerd als een pancytopenie met hypocellulariteit in het beenmerg. Aplastische anemie is meestal een verworven aandoening. Bij aplastische anemie bestaat er een afname in pluripotente stamcellen, met een defect in de overige stamcellen. Repopulatie van het beenmerg vindt hierdoor niet plaats. Myelodysplasie, paroxysmale nocturne hemoglobinurie en acute myeloblastische leukemie kunnen ontstaan.

    Oorzaken van aplastische anemie zijn: idiopathisch (67%, waarschijnlijk immunologisch), door medicijngebruik (antibiotica, carbamazepine), chemicaliën (benzeen, lijmsnuiven), radiatie, insecticiden, infecties (hepatitis, EBV, HIV), paroxysmale nocturne hemoglobinurie en zwangerschap. Genetische oorzaken van aplastische anemie zijn zeldzaam. Fanconi’s anemie is een autosomale recessieve aandoening waarbij skelet, huid, ogen, nieren en centraal zenuwstelsel is aangedaan. Het treedt op in de leeftijd tussen 5 en 10 jaar.

    Klinische manifestaties ten gevolge van beenmergfalen zijn; anemie, bloedingen en infectie. Laboratoriumonderzoek vertoont een pancytopenie, afwezigheid van reticulocyten en aplastisch beenmerg met een toename in vet. De differentiaal diagnose bevat andere oorzaken van pancytopenie, zoals medicijnen, megaloblastische anemie en beenmerg infiltratie (Hodgkin lymfoom, NHL, acute leukemie, myeloom, myelofibrose). De diagnose kan worden bevestigd met een beenmergbiopt. Therapie bestaat uit het versnellen van het herstel van het beenmerg in combinatie met ondersteunende therapie. Ondersteunende therapie richt zich vooral op het voorkomen van infecties door middel van antibiotica en aanvullen van rode bloedcellen en bloedplaatjes.

    Aplastische anemie vertoont een verschillend verloop: van een spontane remissie tot een ernstige pancytopenie die via bloedingen of infecties tot de dood kan leiden. Een sterke reductie in bloedcellen komt overeen met een slechte prognose. Beenmergtransplantatie kan worden uitgevoerd bij jonge patiënten met een HLA-identieke broer of zus. In ernstige gevallen wordt immunosuppressieve therapie voorgeschreven, met een 5-jaars overleving van 75-85%. Niet-gerelateerde individuen kunnen leiden tot rejectie, graft-versus-host-ziekte en virale infecties.

    Hemolytische anemie

    Hemolytische anemie wordt veroorzaakt door een verhoogde afbraak van rode bloedcellen. Afbraak van rode bloedcellen wordt uitgevoerd door macrofagen in beenmerg, lever en milt. Verhoogde afbraak van erythrocyten leidt niet altijd tot anemie, omdat het beenmerg het tekort kan compenseren. Hierbij zullen immature rode bloedcellen (reticulocyten) in het bloed terecht komen en deze kunnen in het bloeduitstrijkje herkend worden. In het beenmerg kan erythroïde hyperplasie worden gezien.

    De belangrijkste erfelijke oorzaken van hemolytische anemie zijn: erfelijke sferocytose, erfelijke stomacytose, thalassemie, sikkelcelanemie en metabole afwijkingen. De belangrijkste verworven oorzaken zijn ten gevolge van immuun-gemedieerde effecten (auto-antilichamen, allo-antilichamen, medicijn-geïnduceerde antilichamen) en niet immuun-gemedieerde effecten (membraandefecten, mechanische factoren, secundair aan systemische ziekte). Ook verschillende toxinen en infecties kunnen hemolyse bewerkstelligen.

    Aangeboren hemolytische anemie

    Hereditaire sferocytose (HS) is de meest voorkomende overgeërfde vorm van hemolytische anemie bij Noord-Europeanen. Defecten in het membraan van de rode bloedcel leiden tot verlies van gedeelten van het membraan wanneer de cel de milt passeert. Vanwege de defecten ontwikkelt de cel zich tot een sferocyt, deze cellen zijn meer stijf en minder vervormbaar dan erythrocyten. De aandoening kan zich presenteren met geelzucht, anemie, splenomegalie en ulceras op het been. Chronische hemolyse kan tot de ontwikkeling van pigment galstenen leiden. Laboratoriumonderzoek toont een milde tot ernstige anemie. Sferocyten en reticulocyten zijn in het bloeduitstrijkje aanwezig. Hemolyse kan worden gezien in een verhoogd serum bilirubine en urinaire urobilinogeen. De directe antiglobuline (Coomb’s) test is negatief. Splenectomie kan als behandeling worden uitgevoerd.

    Hereditaire elliptocytose komt bij 1 op de 2500 kaukasische mensen voor. De rode bloedcellen worden elliptisch vanwege deficiënties van proteïne 4.1. Klinisch lijkt het erg op HS maar dan milder.

    Bij hereditaire stomatocytose ontstaan stomatocyten. Dit zijn rode bloedcellen met een spleetvormig, centraal bleek gedeelte. Deze ontstaan ten gevolge van een overgeërfd membraandefect of een overmaat aan alcohol. Hoewel deze aandoening zeldzaam is, is diagnose van belang, omdat splenectomie gecontra-indiceerd is vanwege de ontwikkeling van trombo-embolische complicaties.

    Verschillende soorten hemoglobine komen voor in het menselijk lichaam. Hemoglobine F (HbF) is aanwezig in de foetus, hemoglobine A (HbA) komt voor 97% voor bij volwassen en hemoglobine A2 (HbA2) komt voor 2% voor bij volwassenen. Voor de geboorte vindt erythropoiese opeenvolgend plaats in de dooierzak, de lever en de milt, terwijl na de geboorte dit plaatsvindt in het beenmerg. Abnormaliteiten kunnen ontstaan in globineketenproductie (thalassemie), structuur van de globineketens (sikkelcelanemie) en een combinatie van deze twee.

    Een voorbeeld van een hemoglobinopathie zijn de verschillende soorten thalassemie. Normaal bestaat er een 1-op-1-productie van alfa- en bètaketens. Deze productie kan uit balans raken ten gevolge van een synthesedefect, wat tot gevolg heeft dat globineketens neerslaan in rodebloedcelprecursors. Dit leidt tot ineffectieve erythropoiese. De thalassemie-soorten komen vooral voor in het Midden-Oosten, zuidoost Azië en Noord-Afrika.

    In homozygote β-thalassemie wordt of een sterk verminderde hoeveelheid bètaketens geproduceerd (β+) of helemaal geen bètaketens (β0). Een ophoping van alfaketens in erythroblasten leidt tot ineffectieve erythropoiese en hemolyse. HbA2 en HbF zijn verhoogd in het bloed. β-Thalassemie wordt veroorzaakt door puntmutaties in genen die β-globine coderen. De behandeling is gericht op het onderdrukken van de ineffectieve erythropoiese en het voorkomen van bot-deformiteiten, zodat normale ontwikkeling plaats kan vinden. Foliumzuur supplementen voor lange tijd, bloedtransfusies elke 4-6 weken en eventuele splenectomie of een beenmergtransplantatie behoren tot de behandeling.

    α-Thalassemie wordt veroorzaakt door deleties in de α-globinegenen. Bij deleties in alle 4 de genen is α-ketensynthese niet aanwezig, dit is niet levensvatbaar. Bij deleties in 3 genen is HbH aanwezig in het bloed dat geen zuurstof kan transporteren, dit leidt tot matige tot ernstige anemie en splenomegalie. Bij deleties in 2 genen is microcytose met of zonder een milde anemie aanwezig. Een deletie in 1 gen geeft een normaal bloedbeeld. α-Thalassemie die niet veroorzaakt wordt door deleties gaat gepaard met ernstige anemie, samen met infecties.

    Sikkelcelsyndromen

    Sikkelcelhemoglobine (HbS) ontstaat door een mutatie van valine naar glutaminezuur in de β-globineketen. Dit kan homozygoot of heterozygoot voorkomen en komt vooral voor in Afrika, India, het Midden-Oosten en Zuid-Europa. HbS moleculen die niet geoxygeneerd zijn worden stijf en krijgen hun karakteristieke sikkelvorm. Op lange termijn is dit irreversibel en leidt het tot een kortere celoverleving en een slechtere passage door microcirculatie met weefsel infarcten tot gevolg. Omdat HbS wel goed zuurstof kan afgeven voelen patiënten zich vaak niet ziek. Het overgaan tot sikkelcellen wordt geïnduceerd door infectie, dehydratie, koude, acidose en hypoxie. Homozygote patiënten hebben een ernstig fenotype, gecombineerd heterozygote patiënten (HbS en C) vertonen intermediaire symptomen, terwijl normaal heterozygote patiënten (HbS en HbA) geen symptomen vertonen. Klinische uitingen van sikkelcelanemie zijn:

    • Vaso-occlusieve crises: acute pijn in de handen en voeten kunnen ontstaan ten gevolge van occlusie van kleine bloedvaten

    • Pulmonaire hypertensie treedt op bij 30-40% van de patiënten. Pulmonaire hypertensie en chronische longaandoeningen zijn de meest voorkomende doodsoorzaak bij sikkelcelanemiepatiënten.

    • Acute borst syndroom: dit syndroom wordt veroorzaakt door infecties, een vetembolie of een pulmonair infarct. Dyspneu, borstpijn en hypoxie komen voor. Presentatie kan langzaam zijn, maar patiënten kunnen ook binnen uren overlijden. Het komt bij tot 30% van de patiënten voor.

    • Anemie: chronische hemolyse leidt tot een stabiel hemoglobine, maar dit kan in acute situaties verlaagd worden door bijvoorbeeld sekwestraties in de milt, beenmergaplasie en medicijnen of infecties.

    • Sekwestratie van de milt: Vaso-occlusie kan tot vergroting van de milt leiden met hypovolemie, collaps en soms de dood tot gevolg.

    • Beenmerg aplasie: infectie met parvovirus B19 kan tot beenmergaplasie leiden.

    • Lange-termijn problemen zijn onder andere groei en ontwikkelingsproblemen, botnecrose, osteomyelitis, infecties in botten/longen en nieren en beenzweren. Neurologische complicaties komen bij 25% van de patiënten voor.

    Laboratoriumonderzoek vertoont een Hb tussen 60-80 g/L met veel reticulocyten (10-20%). Het bloeduitstrijkje vertoont tekenen van hyposplenie en sikkelcellen. Een sickel solubility test kan voor snelle screening worden gebruikt. Behandeling bestaat uit het opvangen van factoren die sikkelcelanemie induceren. Acute pijnaanvallen moeten behandeld worden met ondersteunende therapie en pijnstillers (morfine, NSAIDS). Profylactisch wordt penicilline toegediend, foliumzuur wordt aan patiënten met hemolyse gegeven. Opname is geïndiceerd bij ernstige pijnaanvallen, acute borst syndroom, darm ischemie, sekwestraties van de milt, aantasting van het centraal zenuwstelsel, aritmie, galstenen en enkele andere symptomen.

    Transfusies en splenectomie kunnen levensreddend zijn in jonge kinderen met sekwestraties van de milt. Hydroxycarbamide wordt gebruikt als therapie voor sikkelcelanemie, omdat het HbF concentraties verhoogt. Stamceltransplantatie is een therapeutische optie onder de leeftijd van 16 jaar bij ernstige ziekte. De prognose is variabel met patiënten die jong overlijden tot mensen die nauwelijks last van de aandoening hebben.

    Er bestaan vele verschillende globineketendefecten, zoals een combinatie van HbS en HbC. Dit leidt tot een fenotype dat milder is dan HbSS, maar een verhoogde kans op trombose geeft. Ook combinaties tussen bèta-thalassemie en sikkelcelanemie kunnen optreden. Screening van zwangere vrouwen en ouders die of β-thalassemie of sikkelcelanemie hebben kan nodig zijn voor diagnose, omdat kinderen een verhoogde kans op de aandoening hebben. Als blijkt dat beide ouders een gemuteerd gen dragen en het kind (door middel van foetale screening) een ernstige vorm van thalassemie heeft, kan abortus worden overwogen.

    Verworven hemolytische anemie

    De oorzaken van verworven hemolytische anemie kunnen worden ingedeeld in 3 groepen:

    • Immuundestructie van erythrocyten: auto-antilichamen, allo-antilichamen, medicijn-geïnduceerde antilichamen

    • Non-Immuundestructie van erythrocyten: mechanische factoren, secundair aan systemische aandoeningen, verworven membraandefecten

    • Overige oorzaken: toxinen, malaria, hypersplenie, brandwonden, medicijnen en chemicaliën.

    Auto-immuun hemolytische anemie

    Bij deze verworven aandoeningen binden auto-antilichamen aan erythrocyten, waardoor deze worden afgebroken. Het kan worden aangetoond met een positieve directe antiglobulinetest (Coomb’s test). Auto-immuun hemolytische anemie is in te delen in koude en warme typen, afhankelijk van op welke temperatuur het antilichaam beter aan de erythrocyten bindt.

    Warme auto-immuun hemolytische anemie

    Deze aandoeningen presenteren zich meestal in vrouwen tussen de 40 en 60 jaar. Symptomen zijn anemie en geelzucht die in korte episoden voorkomen en tot een intermitterend, chronisch patroon kunnen overgaan. Deze aandoeningen kunnen primair of secundair zijn. De meest voorkomende oorzaak is een lymfoproliferatieve aandoening. Laboratoriumonderzoek toont een hemolytische anemie, sferocytose, een positieve Coomb’s test en auto-antilichamen. Een abdominale CT scan kan splenomegalie of abdominale lymfomen vertonen. Corticosteroïden en splenectomie zijn aangewezen behandelingen, evenals bloedtransfusies bij ernstige anemie.

    Koude auto-immuun hemolytische anemie

    Na bepaalde infecties bestaat er een verhoogde synthese van antilichamen die bij koude temperaturen binden aan rode bloedcellen. Dit kan leiden tot een milde tot matige, transiënte hemolyse. Deze infecties zijn onder andere mycoplasma, CMV en EBC. Chronische koude hemagglutinine ziekte (CHAD) komt vooral bij ouderen voor waarbij monoclonale IgM kou agglutininen een hemolytische anemie veroorzaken. Blootstelling aan kou kan tot een Raynaud-fenomeen-achtig verschijnsel leiden. Laboratoriumtesten vertonen agglutinatie van rode bloedcellen bij lage temperaturen, een positieve Coomb’s test en een verhoogde koude-agglutinine test titer. Behandeling van de onderliggende aandoening; vermijden van kou, bloedtransfusies en rituximab blijken effectief.

    Allo-immuun hemolytische anemie

    Wanneer antilichamen van een persoon reageren met erythrocyten van een andere persoon, ontstaat allo-immuun hemolytische anemie. Dit komt voor bij hemolytische ziekte van de pasgeborene en bij transplantaties en transfusies. Bij hemolytische ziekte van de pasgeborene reageren antilichamen van de moeder met de rode bloedcellen van de foetus en breken deze af. Vaak ontstaat dit ten gevolge van AB0-incompabiliteit. Sensitisatie ontstaat tijdens passage van foetale erythrocyten in de circulatie van de moeder, zodat eerste zwangerschappen haast nooit aangedaan zijn. Klinische kenmerken zijn een milde hemolytische anemie tot intra-uteriene dood vanaf de 18e week met de kenmerken van hydropsie fetalis. Kernicterus leidt tot ernstige geelzucht in de neonatale periode. Hersenschade, spasticiteit en doofheid kunnen zich ontwikkelen.

    De moeder moet getest worden voor AB0- en RhD-groep en voor atypische antilichamen in een vroeg stadium en bij 28 weken. Het fenotype van de vader kan gebruikt worden om de kans op HDN te bepalen. Intravasculaire foetale transfusie kan dan een uitkomst bieden.

    Bij geboorte is een anemie met hoge reticulocyten te zien, een positieve Coomb’s test en een verhoogd bilirubine. Fototherapie en uitwisselingstransfusie kunnen als therapie worden gebruikt. Anti-D kan worden gegeven aan de moeder na geboorte wanneer deze RhD-negatief is, de foetus RhD-positief is en er geen maternale anti-D reeds aanwezig is.

    Hemostase en trombose

    Hemostase bevat het geheel aan mechanismen dat wordt geactiveerd na bloedvatschade met als doel de bloedstroom in stand te houden door middel van stolselformatie. Gezond endotheel voorkomt plaatjesadhesie en trombusformatie vanwege de aanwezigheid van trombomoduline, heparaan sulfaat, prostacycline, stikstofoxide en plasminogeen activator. Schade aan endotheel leidt tot binding van bloedplaatjes aan subendotheelcollageen via Von-Willebrandfactor.

    Afgifte van ADP door plaatjes leidt tot aggregatie van bloedplaatjes, afgifte van serotonine en prostaglandine leidt tot vasoconstrictie. Een plug van bloedplaatjes wordt gevormd en activatie van de stollingscascade leidt tot stabilisatie van de plug door fibrine. Stolling vindt plaats door een cascade aan enzymatische reacties die uiteindelijk fibrinogeen omzetten naar fibrine. De basis van de stollingscascade zijn zymogenen (inactieve serinekinasen) die geactiveerd moeten worden en vervolgens andere zymogenen activeren. De meeste stollingsfactoren worden aangemaakt in de lever. De stollingscascade bestaat uit een intrinsieke en extrinsieke pathway. Dit is een versimpeld overzicht van de stollingscascade:

    • Extrinsieke cascade: Tissue Factor (TF) bindt aan VII, dat X omzet naar Xa. Xa zet protrombine om naar trombine. Trombine zet fibrinogeen om naar fibrine.

    • Intrinsieke cascade: Contact met subendotheelcollageen activeert XII. Dit activeert XI, wat vervolgens IX activeert. IXa werkt samen met VIIIa om X te activeren. Xa zet protrombine om naar trombine. Trombine zet fibrinogeen om naar fibrine.

    • Tissue factor pathway inhibitor (TFPI) inhibeert Xa-productie. Dit wordt opgevangen door trombine, dat VIII en V activeert. VIIIa activeert X; Va ondersteunt de omzetting van protrombine naar trombine.

    • Von-Willebrandfactor (VWF) wordt aangemaakt in endotheel en megakaryocyten (voorlopers van trombocyten). VWF versterkt de functie van VIII.

    Vervolgens moet een anti-coagulatie systeem ervoor zorgen dat stolling niet tot trombose leidt:

    • Antitrombine inactiveert stollingsfactoren. Heparine versterkt de functie van antitrombine.

    • Proteïne-C wordt geactiveerd door trombine dat gebonden is aan trombomoduline op endotheel. Proteïne-C inhibeert V en VIII waardoor stolling afneemt.

    • Proteïne-S is een cofactor van proteïne-C en ondersteunt de functie van proteïne-C.

    Fibrinolyse is de afbraak van fibrine producten en wordt geïnitieerd na vaatschade. Afbraak van fibrine zorgt voor een balans na het begin van fibrine productie. Productie wordt gecontroleerd door trombine, afbraak door plasmine. Deze balans kan als volgt gevisualiseerd worden:

    1. Productie: Protrombine => Trombine en Fibrinogeen => Fibrine   

    2. Afbraak: Plasminogeen => Plasmine           en Fibrine =>Fibrinogeen      

    Tissue plasminogen activator (t-PA) stimuleert omzetting van plasminogeen naar plasmine en induceert dus afbraak van fibrine. PAI-1 inhibeert t-PA en induceert dus productie van fibrine. Proteïne-C inhibeert PAI-1 en induceert dus afbraak van fibrine. Afbraak van fibrine leidt tot de vorming van D-dimeren, die diagnostisch gemeten kunnen worden om vast te stellen dat de stollingscascade is geactiveerd.

    De anamnese bij bloedingsziekten richt zich op het opsporen van een gegeneraliseerd defect, dat zichtbaar is in bloedingen op meerdere plekken, spontane bloedingen en excessief bloeden. De familiegeschiedenis is erg belangrijk. Ernstige bloedingsziekten vertonen zich in de jeugd, terwijl milde bloedingsziekten zich na operaties, tandartsbezoek of trauma tonen. Een vasculaire of plaatjesbloeding wordt gekarakteriseerd door het makkelijk oplopen van blauwe plekken, frequente neusbloedingen, mondbloedingen, petechiae en ecchymosen. Bij laboratoriumonderzoek tonen de bloedwaarden en het bloeduitstrijkje de hoeveelheid plaatjes en de aanwezigheid van leukemie of lymfomen. De volgende stollingstesten worden afgenomen:

    • Protrombine tijd (PT) die de extrinsieke stollingscascade meet en verhoogd is bij abnormaliteiten van deze factoren. Normaalwaarde van PT is 12-16s.

    • Geactiveerde partiele tromboplastine tijd (APTT) meet de intrinsieke stollingscascade. De test is onafhankelijk van factor VII. Normaalwaarde is 26-37s.

    • Trombine tijd (TT) is verhoogd bij fibrinogeen deficiëntie.

    Met correctietesten kan rekening gehouden worden met combinaties van factordeficiënties. Factorassays kunnen individuele stollingsfactoren meten. De bloedingstijd kan worden gemeten om plaatjesdefecten of een verminderde hoeveelheid plaatjes aan te tonen.

    Vasculaire aandoeningen

    Vasculaire aandoeningen worden gekenmerkt door het makkelijk oplopen van blauwe plekken en bloedingen in de huid. Laboratoriumtesten zijn vaak normaal. Voorbeelden zijn:

    • Hereditaire hemorragische telangi-ectasie: Mutaties in de genen voor de TGF-β pathway leiden tot terugkerende neusbloedingen en chronische gastro-intestinale bloedingen. Dilatatie van capillairen leidt tot karakteristieke rode plekjes op de huid en slijmvliezen die wit worden wanneer druk wordt uitgeoefend.

    • Easy bruising syndroom: Dit wordt gekarakteriseerd door het snel ontwikkelen van blauwe plekken op armen, benen en de romp bij gering trauma.

    • Seniele purpura of purpura ten gevolge van steroïdegebruik: Dit ontstaat vanwege atrofie van vasculair ondersteunend weefsel.

    • Purpura tgv infectie: Schade aan vasculair endotheel kan tot uitslag leiden, zoals bij meningococcen septikemie.

    • Henoch-Schonlein purpura komen vooral bij kinderen voor waarbij purpura aanwezig zijn op benen en billen. Het ontstaat vaak na een bovenste luchtweginfectie en kan leiden tot buikpijnen, artritis, hematurie en glomerulonephritis.

    • Episodes van onverklaarbaar bloeden of blauwe plekken kunnen een indicatie van mishandeling of automutilatie zijn.

    Bloedplaatjes aandoeningen: trombocytopenie

    Ernstige spontane bloedingen kunnen optreden bij plaatjeswaarden <20 x 109 per liter. Normaalwaarden: 50-400 x 109 per liter. Trombocytopenie kan veroorzaakt worden door verminderde productie, overmatige vernietiging, sekwestratie of verdunning van het bloed.

    Immuun trombocytopenische purpura (ITP)

    Bij ITP ontstaat trombocytopenie ten gevolge van immuun gemedieerde destructie van bloedplaatjes. Macrofagen herkennen antilichamen op bloedplaatjes en verwijderen deze. ITP kan bij kinderen tussen 2-6 jaar acuut optreden met mucocutaneuze bloedingen. Bij volwassenen komt het vooral bij vrouwen voor in de context van auto-immuun aandoeningen, chronische lymfatische leukemie, solide tumoren en infecties zoals HIV. Antilichamen tegen plaatjes zijn aanwezig in 60-70% van de patiënten.
    Snel blauwe plekken ontwikkelen, neusbloedingen, purpura en menorragie zijn klinische uitingen van ITP. Ernstige bloedingen zijn zeldzaam. Trombocytopenie en soms toename van megakaryocyten in het beenmerg zijn aanwezig. ITP wordt bij kinderen zelden behandeld. Als dit wel het geval is worden corticosteroïden of intraveneuze immunoglobuline en anti-D gegeven. Corticosteroïden en intraveneuze immunoglobuline vormen de eerstelijnsbehandeling bij volwassenen. Splenectomie behoort tot de tweedelijnsbehandeling.

    Post-transfusie purpura (PTP) kan optreden na transfusie met bloedplaatjes, waarbij antilichamen bloedplaatjes afbreken, wat tot bloedingen kan leiden. Dit komt alleen voor bij patiënten die eerder immunisatie zijn ondergaan door bloedtransfusie of zwangerschap. Trombotische trombocytopenische purpura (TTP) is een zeldzame aandoening gekenmerkt door purpura, koorts, cerebrale dysfunctie, microangiopathische hemolytische anemie en soms acute nierschade. De stollingscascade is normaal, maar LDH is verhoogd. TTP ontstaat ten gevolge van endotheelschade en microvasculaire trombose die tot plaatjes-consumptie en trombocytopenie leidt. De onderliggende oorzaak is een ADAMTS-13 deficiëntie. TTP kan zwangerschap, orale anticonceptie, SLE, infectie en sommige medicijnen begeleiden. Plasma uitwisseling kan als behandeling worden gebruikt, omdat ADAMTS-13 wordt aangevuld en eventuele auto-antilichamen verwijderd. In de acute setting kunnen corticosteroïden en rituximab worden gegeven. Onbehandeld is de mortaliteit tot 90%, met behandeling daalt dit tot 10%.

    Bloedplaatjes aandoeningen: bloedplaatjesfunctie

    Deze aandoeningen uiten zich met het snel ontwikkelen van blauwe plekken en bloedingen en trombose. Voorbeelden zijn Glanzmann trombasthenie, Bernard-Soulier syndroom, storage-pool-ziekte, myeloproliferatieve aandoeningen, paraproteïnemie, nier- en leveraandoeningen en medicijn-geïnduceerde aandoeningen.

    Verhoging van het aantal bloedplaatjes (trombocytose) kan voorkomen bij splenectomie, maligniteiten, inflammatoire aandoeningen (RA, IBD), operaties, bloedingen, myeloproliferatieve aandoeningen en ijzerdeficiëntie. Langdurig verhoogd aantal bloedplaatjes kan leiden tot trombose en tot bloedingen. De onderliggende aandoening moet hiervoor behandeld worden, of er kan aspirine worden gegeven.

    Overgeërfde stollingsaandoeningen

    Overgeërfde stollingsaandoeningen komen minder vaak voor dan verworven stollingsaandoeningen. Daarnaast betreffen overgeerfde aandoeningen meestal een enkele stollingsfactor en verworven meerdere. Hemofilie A is een X-gebonden aandoening en treft vooral mannen. Factor VIII wordt niet aangemaakt vanwege een genetisch defect. Een derde van de gevallen treedt op als een nieuwe mutatie in families waar eerder geen hemofilie is vastgesteld. Normale waarden voor factor VIII zijn 50-150 IU/dl. Waarden lager dan 1 IU/dl leiden tot frequente, spontane bloedingen in spieren en gewrichten. Waarden tussen 1-5 IU/dl leiden tot minder spontane bloedingen met ernstige bloedingen na trauma. Waarden boven 5 IU/dl leiden alleen tot spontane bloedingen na trauma.

    Hemofilie vertoont normale bloedingstijd en PT, verlengde APTT, laag VIII en normale VWF. De behandeling bestaat uit 2 keer per dag intraveneuze recombinante factor VIII toe te dienen. Profylactische toediening vindt 3 keer per week plaats bij hoog-risico patiënten.

    5-10% van patiënten zullen inhibitoire antilichamen ontwikkelen tegen factor VIII. Het lichaam herkent de stof namelijk niet wanneer dit toegediend wordt. Zij kunnen dus niet behandeld worden met factor VIII. Zeer hoge doses van VIIa kunnen worden toegediend om dit te omzeilen. Het is mogelijk om over tijd de inhibitoire antilichamen te vernietigen met immuun-gemedieerde therapie. Carrier status kan worden vastgesteld met een familiegeschiedenis en stollingsfactor assays. Amnioncentese of chorionvillusbiopsie kan gebruikt worden om de status van de foetus te beoordelen.

    Hemofilie B komt minder vaak voor dan hemofilie A en betreft een deficiëntie van factor IX. De symptomen zijn hetzelfde als hemofilie A. Behandeling is met recombinante factor IX en profylactische doses worden 2 keer per week gegeven.

    Bij Von Willebrand ziekte (VWD) leidt een abnormaliteit in VWF tot verminderde plaatjesfunctie en afbraak van factor VIII. VWF ondersteunt plaatjesadhesie aan beschadigd subendotheel en stabiliseert factor VIII. Drie typen VWD bestaan:

    • Type 1 is autosomaal dominant en bevat een kwantitatieve VWF deficiëntie

    • Type 2 is autosomaal dominant en bevat een kwalitatieve VWF abnormaliteit

    • Type 3 is recessief en bevat een complete VWF deficiëntie.

    Type 1 en 2 vertonen milde ziekte met bloedingen na trauma/operatie, neusbloedingen en menorragie. Type 3 patiënten vertonen ernstigere bloedingen, maar niet zo ernstig als de spier en gewricht bloedingen bij hemofilie A. Desmopressine of Von-Willebrandfactor wordt gebruikt als behandeling en is afhankelijk van de ernst van de aandoening.

    Verworven stollingsaandoeningen

    Vitamine K ondersteunt gamma-carboxylatie van glutamine zuur op factoren II, VII, IX, X en proteïne-C en -S waardoor binding aan calcium kan plaatsvinden. Vitamine K deficiëntie ontstaat ten gevolge van beperkte opslag, malabsorptie en orale anticoagulantia. Blauwe plekken, hematurie en gastro-intestinale of cerebrale bloedingen kunnen ontstaan. PT en APTT zijn verlengd. Behandeling is met vitamine K.

    Leveraandoeningen kunnen leiden tot een aantal defecten in hemostase: Vitamine K deficiëntie, verminderde synthese van stollingsfactoren, trombocytopenie, functionele defecten van plaatjes en fibrinogeen en DIC.

    Gedissemineerde intravasculaire coagulatie (DIC) ontstaat als gevolg van een wijdverspreide activatie van coagulatie die samengaat met consumptie van stollingsfactoren. Dit leidt tot stollingen en bloedingen die overal in het lichaam kunnen voorkomen. DIC kan voorkomen bij maligniteiten, septikemie, hemolytische transfusie reacties, obstetrische problematiek en andere situaties. De patiënt is vaak acuut ziek en in shocktoestand met een duidelijke onderliggende oorzaak. DIC presenteert zich verschillend van geen bloedingen tot wijdverspreide bloedingen. Ernstige gevallen tonen verlengd PT, APTT en TT met lage fibrinogeen waarden en ernstige trombocytopenie. Hoge waarden van FDP (Fibrine Degradatie Producten) waaronder D-dimeren komen voor. De onderliggende aandoening moet behandeld worden en bloedende patiënten vereisen mogelijk transfusie van bloedcomponenten.

    Excessieve fibrinolyse kan optreden tijdens operaties van prostaat, borst, pancreas en uterustumoren vanwege t-PA afgifte. Primaire hyperfibrinolyse kan DIC begeleiden. In het geval van excessieve fibrinolyse kunnen wijdverspreide bloedingen zonder trombocytopenie optreden, met een klinisch en diagnostisch beeld dat op DIC leidt.

    Trombose

    Een trombus is een solide massa die gevormd wordt in de circulatie vanuit bloedonderdelen. Fragmenten van de trombus die afbreken en bloedvaten blokkeren worden embolie genoemd. Trombo-embolische aandoeningen komen vaker voor dan bloedingsaandoeningen, met een hoge incidentie van trombose/embolie in de kransslagaderen, hersenen en longen.

    Arteriële trombose

    Trombose in arteriën is vaak geassocieerd met de ontwikkeling van atheromen op plekken met een turbulente bloedstroom. Plaatjes binden aan beschadigd endotheel zodat een witte trombus zich ontwikkelt. Scheuring van deze trombus kan leiden tot stollingsactivatie en occlusie van het bloedvat. Risicofactoren hiervan komen overeen met die van atherosclerose.

    Veneuze trombose

    Veneuze trombose ontstaat, in tegenstelling tot arteriële trombose, vaak in normale bloedvaten. Oorzaken zijn stase en hypercoagulabiliteit. Meestal gebeurt dit in de diepe venen van de benen, wat daarom diepe veneuze trombose (DVT) wordt genoemd. Chronische veneuze obstructie ten gevolge van trombose kan tot een gezwollen been en ulceratie leiden. Risicofactoren voor een DVT zijn ouderdom, verhoogd BMI, orale anticonceptiva, vliegtuigreizen, immobilisatie, zwangerschap, trombofilie, oestrogeen therapie, trauma, operaties, maligniteiten, hartfalen en vele andere factoren.

    Trombofilie

    Trombofilie beschrijft verworven of overgeërfde defecten in hemostase die tot trombose leiden. Dit komt voor bij mensen met terugkerende veneuze trombose, trombose op jonge leeftijd, trombose op ongewone plekken, neonatale trombose, miskramen en arteriële trombose zonder  arteriële ziekte.

    Stollingsabnormaliteiten

    Factor V Leiden is een andere vorm van stollingsfactor V, namelijk met een substitutie van glutamine voor arginine. Hierdoor kan factor V slechter worden geïnactiveerd door proteïne-C, waardoor de kans op trombose toeneemt. Factor V Leiden komt bij 3-5% van gezonde personen voor en bij 20-30% patiënten met veneuze trombose. Factor V Leiden functioneert synergistisch met andere risicofactoren zoals pilgebruik en zwangerschap waardoor de kans op trombose sterk toeneemt. Absolute risico’s voor een individu blijven echter nog steeds laag (<0.5%/jaar).

    Antitrombine deficiëntie kan voorkomen in de volgende gevallen: trauma, grote operaties, pilgebruik, overgeërfd via de ouders en ernstige proteïnurie. Terugkerende trombotische episoden treden op vanaf een jonge leeftijd. Patiënten zijn vaak resistent tegen heparine.

    Deficiënties van proteïne-C en -S leiden tot een verhoogd risico op veneuze trombose voor het 40e levensjaar. Neonaten die homozygoot zijn, zijn in levensgevaar en moeten direct suppletie ondergaan.

    Preventie en behandeling van arteriële trombose

    Preventie van arteriële trombose bestaat vooral uit het verminderen  van de risicofactoren voor atherosclerose. Behandeling van arteriële trombose bestaat uit anti-bloedplaatjes medicatie en trombolytische therapie.

    Anti-bloedplaatjes therapie: Activatie van bloedplaatjes op de plek van vasculaire schade is erg belangrijk in arteriële trombose en kan worden tegengegaan met de volgende medicatie:

    • Aspirine inhibeert COX-1 waardoor bloedplaatjes minder TXA2 aanmaken. Dit vermindert bloedstolling en wordt vaak gebruikt in preventie en behandeling van cardiovasculaire aandoeningen.

    • Dipyridamole inhibeert bloedplaatjes fosfodiesterase en werd vaak gebruikt als antitrombotisch medicijn, hoewel er weinig bewijs is voor de effectiviteit.

    • Clopidogrel blokkeert de ADP receptor op bloedplaatjes en wordt gebruikt in acuut coronair syndroom.

    • Glycoproteïne IIb/IIIa receptor antagonisten blokkeren plaatjesreceptoren voor fibrinogeen en vWF. Excessief bloeden kan als bijwerking optreden.

    Trombolytische therapie:

    • Streptokinase is afkomstig uit hemolytische streptococci en versnelt de omzetting van plasminogeen naar plasmine. Bloedingen kunnen optreden.

    • Plasminogeen activators: Recombinante vormen van tissue plasminogen activator kunnen worden gebruik om stollingen af te breken. Alteplase, tenecteplase en reteplase zijn hier voorbeelden van. Ook hierbij kunnen bloedingen optreden.

    Andere medicijnen die in antistollingstherapie worden gebruikt zijn heparine, hirudine-achtige stoffen, fondaparinux, warfarine, Xa inhibitoren en trombine inhibitoren. De snelheid waarmee trombolytische en anti-plaatjestherapie kan worden toegediend is een belangrijke factor in de effectiviteit van de behandeling. Deze therapievormen worden vooral bij acuut myocardinfarct, CVA’s en pulmonale embolieën gebruikt. Bloeding is altijd een risico bij dit soort therapie.

    Preventie en behandeling van veneuze trombo-embolie

    Veneuze trombo-embolieën komen vooral voor bij oudere personen na operatie, bij maligniteiten, bij mensen met een geschiedenis van trombose en bij immobilisatie ten gevolge van trauma, myocardinfarct of andere aandoeningen. Preventie en behandeling van veneuze trombose richt zich voornamelijk op het gebruik van anticoagulantia.

    • Heparine is een mix van polysachariden die bindt aan antitrombine en deze stof versterkt. Antitrombine werkt op trombine, VIIa, IXa, Xa, XIa en XIIa.

    • Laag moleculair gewicht heparine (LMWH) is een enzymatische degradatie van normaal heparine. Bioavailability, activiteit tegen Xa en halfwaardetijd is verhoogd bij deze stof. Ook vertoont LMWH weinig invloed op de algehele coagulatie, zodat bijvoorbeeld de APTT haast niet veranderd.

    • Heparine-geïnduceerde trombocytopenie is een complicatie die zelden optreedt bij heparine therapie en bestaat uit de vorming van antilichamen tegen heparine en plaatjesfactor 4. Dit treedt op 5-14 dagen na behandeling en leidt tot ernstige trombose. Heparine moet direct gestopt worden.

    • Fondaparinux is een inhibitor van factor X net zoals LMWH en wordt gebruikt bij acuut coronair syndroom.

    Wat zijn mogelijke kwaadaardige ziekten? - Chapter 17

    Wat zijn mogelijke kwaadaardige ziekten? - Chapter 17

    Kwaadaardige ziekte

    Ongeveer een derde van de populatie in het Westen zal kanker in het leven ontwikkelen. Op cardiovasculaire ziekten na is kanker de grootste oorzaak van de dood voor vele mensen. De kans op kanker groeit naar mate men ouder wordt door een accumulatie van mutaties. Kwaadaardige transformatie kan optreden door het muteren van een proto-oncogen of het verlies van functie van een tumor suppressor gen. De genen die worden aangedaan hebben vaak een functie als het controleren van celcyclus checkpoints, DNA herstel, DNA schade-herkenning, apoptose, differentiatie, groeifactor receptoren, signalerende pathways en tumor suppressor genen.

    Tumorcellen worden niet herkend door het immuunsysteem, omdat ze geen activatiemoleculen voor cytotoxische T-cellen kunnen ontwikkelen en omdat tumoren immunosuppressieve cytokinen uitscheiden. De snelheid van de groei van een tumor neemt af naar mate de tumor steeds groter wordt. Dit komt voornamelijk doordat er formatie van nieuwe bloedvaten, ofwel angiogenese, optreedt.

    De invasie van kanker in omliggende weefsels komt tot stand door het verlies van cel-cel cohesie door celadhesiemoleculen. De invasie wordt ook bepaald door de balans van activators van de proteolyse-remmers. Verspreiding van tumorcellen gaat via de vasculaire en lymfatische vaten en door specifieke interacties tussen receptoren en cytokinen.

    De oorzaak van kanker is vaak onbekend, maar heeft te maken met de individuele genetische predispositie en omgevingsfactoren. Expressie van de mutatie in de carcinogenese hangt af van de penetrantie en of het mutante allel recessief of dominant is. Dragers van een recessief allel hebben kans op kanker, wanneer het tweede allell somatisch muteert, ofwel verlies van heterozygositeit.

    Een breed scala aan omgevingsfactoren hebben invloed op de ontwikkeling van maligniteit:

    • Tabak: is verantwoordelijk voor een derde van de overledenen door kanker. Roken is geassocieerd met kanker in de longen, mond, larynx, oesofagus en blaas.

    • Alcohol: is geassocieerd met kanker in de bovenste luchtwegen, gastrointestinale kanaal en een verhoogd risico bij borstkanker.

    • Dieet: is verantwoordelijk voor een derde van de overledenen door kanker, waaronder de consumptie van bepaalde voedingsvezels, rood vlees, gesatureerde vetten, gezouten vis, vitamine E en A en nog veel meer. Obesitas schijnt geassocieerd te zijn met kanker gastrointestinaal, in de borst en in het endometrium.

    • UV-licht: is geassocieerd met huidkanker (basale cel, plaveiselcel en melanoom).

    • Arseen besmetting: door besmet water in zuidoost Azië.

    • Beroepsfactoren: door in aanraking komen met asbest (long en mesotheliale kanker), polycyclische koolwaterstoffen door de verbranding van fossiele brandstoffen (huid, long en blaaskanker) en benzeen (leukemieën).

    • Infectieuze middelen: waaronder T-cel leukemie door HTLV-1, hepatocellulair carcinoom door hepatitis B/C virus, Burkitt’s lymfoom, nasofaryngeaal carcinoom en Hodgekin lymfoom door Epstein-Barr virus, cervixkanker door humane papillomavirus, maagkanker door Helicobacter pylori en blaaskanker door Schistosoma japonicum.

    • Medicatie: oestrogenen zijn betrokken bij vaginale, endometriale en borstcarcinoom, androgenen bij levertumoren en de Hodgekin behandeling zorg weer voor een verhoogd risico op acute myeloïde leukemie, blaas en longkanker.

    • Radiatie: hiermee moet rekening worden gehouden met radiotherapie, diagnostische radiatietechnieken en arbeiders die met radiatie in aanraking komen.

    • Geografische distributie: de incidentie van kanker varieert per geografische regio

    De klinische presentatie van maligniteit

    Om eerdere diagnoses te verkrijgen en de curatieve mogelijkheden te vergroten, wordt een groot aantal screeningsprogramma’s ontwikkeld, die asymptomatische en preinvasieve stadia van kanker opsporen in cervix-, borst- en colonkanker of door het gebruik van serum tumormarkers in prostaat- en ovariakanker. Het doel is individuele/ populatie overleving te verbeteren door vroegtijdige opsporing, waarbij curatie nog mogelijk kan zijn.

    Vervroegde diagnose betekent niet meteen langere overleving, men gaat vaak rond dezelfde leeftijd dood. Dit principe heet lead time bias. Een effectieve screeningsprocedure moet betaalbaar zijn voor de gezondheidszorg, acceptabel zijn voor alle sociale groepen, een goede discriminerende index hebben en een reductie tonen in mortaliteit door kanker.

    Screening wordt uitgevoerd voor:

    • Cervicale kanker: het uitstrijkje is goedkoop en veilig, maar vereist een ervaren cytologist om vroege veranderingen op te sporen. Screening wordt vooral voortgezet door de introductie van de vaccinatie tegen HPV infectie voor vrouwen.

    • Borstkanker: een screeningsprogramma met biplainare mammografie elke drie jaar blijkt de mortaliteit te verminderen uit gerandomiseerde controlestudies. Vrouwelijke BRCA1/2 en p53 mutatiedragers krijgen intensieve screening op vroegere leeftijd.

    • Colorectale kanker: Fecale occult bloedtest is goedkoop en blijken mortaliteit te verminderen. Colonscopie is de ‘gouden standaard’ voor de opsporing van colorectale kanker bij hoge risicopatiënten.

    • Prostaatkanker: serum prostaat-specifieke antigeen (PSA) testen blijken geen algehele vermindering van mortaliteit te geven en worden momenteel niet als nationale screeningsprogramma’s toegepast.

    • Epitheliale ovariakanker: serum CA125 testen blijken overleving te verbeteren, maar hebben veel kosten door onnodige laparotomieën. Periodieke testen met transvaginale ultrasound scans schijnen ook effectief te zijn.

    Kanker presenteert zich soms met plek-specifieke symptomen als pijn, fysieke kenmerken of een voelbare massa. Wanneer kanker in een gevorderd stadium is treden vaak ook niet-specifieke symptomen op als gewichtsverlies, nachtzweten, koorts, vermoeidheid, terugkomende infecties en anorexie. Paraneoplastische syndromen zijn indirecte effecten van kanker en die kunnen reversibel worden door behandeling. Coagulopathie (vorming van bloedstolsels) treedt op bij pancreas-, maag- en borstkanker. Veel kankerpatiënten hebben een verhoogd risico op thromboëmbolisme en moeten profylactisch behandeld worden. Andere symptomen, als immunosuppressie, kunnen worden veroorzaakt door het vrijkomen van bepaalde peptiden, hormonen en cytokinen.

    Serum tumormarkers zijn intracellulaire eiwitten op de celoppervlak glycoproteïnen vrijgekomen in de circulatie en gedetecteerd door immunoassays. Deze worden vooral gebruikt bij periodieke responscontrole na behandeling. Radiologie wordt gebruikt om de diagnose te stellen, de tumor te stageren, de behandelingseffectiviteit te bepalen en de kans op terugkeer in de gate te houden. Contrastmiddelen worden gebruikt om bepaalde structuren te onderscheiden en kunnen metastasen beter in beeld brengen. Er zijn ook weefsel tumormarkers, waarbij gebruikt gemaakt wordt van monoclonale antilichamen tegen tumor antigenen. Moleculaire markers worden bij fluorescent in situ hybridizatie gebruikt om chromosomale translocaties op te sporen.

    Behandeling kan eigenlijk pas gegeven worden op basis van een histologische of cytologische diagnose na het afnemen van een (chirurgische of endoscopische) biopsie. Kwaadaardige cellen kunnen worden onderscheiden van goedaardige cellen door de pleomorfe structuur, verhoogd aantal mitosen, nucleaire abnormaliteiten, chromatine patroon, nucleaire organisatie en verspreiding in lymfe- en bloedvaten.

    Behandeling

    Optimale kankerbehandeling wordt verzorgd door een multidisciplinair team. Bij die zorg hoort de antikankerbehandeling, symptomatische zorg en psychosociale steun. De patiënt wordt behandeld door verschillende specialisten, wat het patiënten zorgpad wordt genoemd. Een curatieve benadering maakt gebruik van locale en effectieve systematische behandeling. De kans op genezing hangt af van het tumortype, de respons op de therapie en het stadium. Sommige metastasen zijn te behandelen. Neoadjuvante therapie wordt toepast om de tumor te laten verkleinen voor de operatie. Adjuvante therapie wordt toegepast om micrometastasen na de operatie nog te verwijderen. Kanker kan resistent worden voor een bepaalde therapie. Wanneer genezing niet meer mogelijk is, spreken we over palliatieve zorg, wat zich richt op het verbeteren van de levenskwaliteit en het verlengen van de levensverwachting.

    Voor het bepalen van de behandeling moet het type tumor, zijn grootte en distributie in kaart gebracht worden. De TNM (tumor, lymfeknoop, metastase) classificatie wordt het meest gebruikt. De respons op een behandeling kan subjectief of objectief zijn. Met subjectieve respons wordt de beleving van de patiënt bedoeld en hier wordt vooral aandacht aan besteed bij palliatieve zorg. Een objectieve respons is klinisch en radiologisch van aard.

    Leukemieën

    Er zijn vier belangrijke subtypen van leukemie:

    1. Acute myeloïde leukemie (AML)

    2. Acute lymfoblastische leukemie (ALL)

    3. Chronische myeloïde leukemie (CML)

    4. Chronische lymfocytische leukemie (CLL)

    Het zijn allen relatief weinig voorkomende ziekten, met een incidentie van rond de 10/100.000 per jaar, en ze kunnen voorkomen op iedere leeftijd. De soort leukemie verschilt wel per leeftijdscategorie: ALL komt vooral voor bij jonge kinderen en CLL vooral bij oudere mensen. Leukemie kan gediagnosticeerd worden door kleuring van perifeer bloed en beenmerg, maar immunofenotypering, cytogenetica en moleculaire genetica zijn essentieel bij het bepalen van de subclassificatie en het bepalen van de prognose en behandeling.

    De etiologie (oorzaak van de ziekte) is in de meerderheid van de patiënten onbekend, maar een aantal factors blijkt wel invloed te hebben:

    • Straling kan DNA-schade veroorzaken in hematopoietische voorlopercellen.

    • Chemicaliën en medicijnen; blootstelling aan onder andere benzeen in de industrie kan zorgen voor beenmergschade.

    • Genetische aandoeningen zoals Fanconi anemie, Li-Fraumeni syndroom en trisomie 21 geven verhoogde kans op leukemie.

    • Virussen zoals human T cell lymphotropic retrovirus type 1 worden geassocieerd met bepaalde typen leukemie.

    In AML hangt de prognose af van een aantal variabelen, waarvan de twee belangrijksten leeftijd en cytogenetica zijn. Curatieve behandeling wordt uitgevoerd bij de meeste patiënten onder de 60, mits er geen significante comorbiditeit is. Het succes van de behandeling hangt af van het cytogenetische patroon. Complete remissie treedt op bij ongeveer 80% van de patiënten onder de 60, waarvan ongeveer de helft compleet geneest.

    ALL kan zich presenteren met significante beenmerg-betrokkenheid, of als gelokaliseerde ziekte, en dan vaak in het mediastinum. De tumorcellen zijn in beide gevallen hetzelfde en niet van elkaar te onderscheiden, dus wordt een vergelijkbare behandeling gebruikt.

    Ongeveer 14% van alle mensen met leukemie heeft CML. Het komt vrijwel uitsluitend voor bij volwassenen, meestal tussen de 40 en 60. In tegenstelling tot de acute leukemievormen, die of snel behandelbaar, of snel fataal zijn, heeft CML een veel langzamere progressie. Chemotherapie slaat daarom ook minder goed aan, waardoor deze vorm van leukemie vaak niet te genezen is.

    De meest voorkomende vorm van leukemie is CLL en ook deze vorm komt vooral bij oudere mensen voor (presentatie is meestal rond de 65). De gemiddelde overleving is ongeveer 10 jaar, afhankelijk van het stadium waarin de ziekte zich bevindt op het moment van diagnose. Vaak worden alleen de symptomen, zoals anemie, bestrijd, aangezien dit net als CML een langzaam progressieve ziekte is en chemotherapie over het algemeen niet goed werkt.

    Borstkanker

    Borstkanker groeit meestal vanuit het epitheel van de melkkanalen en uit zich meestal als een infiltrerend ductaal carcinoom. Basale tumorcellen hebben een slechtere prognose dan luminale tumorcellen. Op een mammografie zullen microcalcificaties te zien zijn. Wanneer er sprake in van familaire borstkanker, zit er meestal een mutatie in BRCA1, BRCA2 of TP53.

    De meeste vrouwen presenteren zich met een pijnloze vergrotende massa in hun borst, wat soms gepaard gaat met afscheiding uit de tepel, putjes in de huid, ulceratie en bij inflammatoire kankers ook oedeem en erythema. Het diagnostisch onderzoek bestaat dan uit palpatie, radiologie (mammografie, ultrasound en MRI scan) en een fijne naald aspiratie cytologie, gevolgd door een grote boor kernnaald biopsie voor histologische bevestiging. Een X-ray en een CT scan worden gebruikt om lymfeklier metastasen op te sporen.

    De prognose, overlevingskans en respons op een bepaalde behandeling hangen af van de grootte van de primaire tumor, het histologische subtype, welk histologische graad/ differentiatie, de oestrogeen en progesteron status, de leeftijd van de patiënt en de menopauzale status.

    Een patiënt kan in overleg met de chirurg en gebaseerd op het kankerstadium kiezen voor een locale excisie, borstsparende chirurgie of gehele mastectomie met of zonder implantaat. Vaak worden lymfeklieren ook geöpereerd, maar metastasen zijn moeilijk volledig te verwijderen en er kan lymfoedeem optreden. Indicatie voor adjuvante radiotherapie zijn: borstsparende chirurgie, een hoge graad primaire tumor, nabijheid van chirurgische marges en meer dan twee lymfeklier metastasen. Bij een derde van de patiënten met borstkanker komen oestrogeen en progesteron receptoren tot expressie. Premenopauzale vrouwen worden vaak behandeld met tamoxifen, ovariëctomie of hypofyse downregulatie door gonadotropine-releasing hormoon analogen, om zo de oestrogeenwaarde te verminderen. In postmenopauzale vrouwen worden androgenen in de bijnier aangemaakt en in vet omgezet tot oestron door het enzym aromatase. Aromatase remmers schijnen bij hun beter te werken dan tamoxifen. Tamoxifen heeft als cardiovasculaire problemen als bijwerkingen. Chemotherapie is minder effectief bij hormoon receptor positieve kanker.

    De toevoeging van adjuvante trastuzumab therapie, die zich richt op de Her2/c-erbB2, verminderd het risico van mortaliteit met 25%, maar heeft ook een toxisch effect op het myocard. Vaak wordt daarom gekozen voor een alternatief regime, bestaande uit docetaxel, carboplatine en trastuzumab. Neoadjuvante therapie blijkt de overleving niet te verbeteren, maar maakt tumoren wel kleiner voor borstsparende chirurgie en vermindert het risico op metastasen.

    Meestal is de behandeling niet curatief, maar palliatief met als doel de minst toxische, maar meest effectieve behandeling te kiezen die de levenskwaliteit zo goed mogelijk behoud en de dood zo lang mogelijk uitstelt.

    Metastatische patiënten krijgen en gecombineerde behandeling van endocriene, chemo- en radiotherapie. Vrouwen met hoge oestrogeen en progesteron receptor waarden reageren vaak goed op endocriene therapie. Patiënten die daar niet goed op reageren of zwakke organen hebben krijgen chemotherapie. Therapieën worden niet gelijktijdig gegeven, zodat er meer opties overblijven voor het toekomstige beleid. Bifosfonaat therapie wordt toegepast bij patiënten met metastasen in de botten.

    Gastro-intestinale kanker

    Patiënten die zich voor het eerst presenteren met symptomatische oesophagus kanker hebben voor 50% al metastase-ontwikkeling. Chirurgie biedt de beste mogelijkheid tot curatie, mits endoscopische ultrasound en CT-PET scans hebben aangetoond dat er geen infiltraat buiten de oesophaguswand is. Neoadjuvante therapie voor mogelijk resectabele plaveiselcarcinomen bestaat uit cisplatine, 5-fluorouracil en radiotherapie. Metastasen kunnen palliatief met chemotherapie behandeld worden. Om dysfagie problemen te verminderen kunnen er verwijdende stents of een gastrostoma worden ingebracht.

    Vroegtijdig kunnen niet-ulceratieve mucosale laesies endoscopisch verwijderd worden om maagkanker te voorkomen. 50% van de maagkankerpatiënten kan curatief behandeld worden met chirurgie. Adjuvante chemotherapie en radiotherapie blijken de overleving te verbeteren. Gevorderde maagkanker wordt palliatief behandeld met chemotherapie en trastuzumab. Vaak dient het dieet aangepast te worden.

    Gastrointestinale stromale tumors zijn zeldzame, langzaam groeiende tumoren in de maag, dunne of dikke darm die een mutatie dragen op het cKit oncogen. Behandeling bestaat uit chirurgie en imatinib. De preventie van darmkanker bestaat uit screening van hoge-risico patiënten, een aangepast dieet en het gebruik van NSAID’s en aspirine. 80% van de darmkanker patiënten ondergaat chirurgie en slechts de helft overleeft langer dan vijf jaar.

    De chirurgische ingreep bij rectale kanker is meestal een totale mesorectale excisie (TME), waarbij het gehele mesorectale weefsel die de kanker omringt wordt weggesneden en een lage rectale anastomose wordt toepast. Vaak wordt neoadjuvante radiotherapie toepast. De chirurgische ingreep bij colonkanker bestaat uit een segmentale resectie en een anastomose plaatsing met verwijdering van de drainerende lymfeknopen.

    Neoadjuvante chemo-radiatie therapie maakt het makkelijker chirurgische marges zuiver te krijgen, maar heeft geen bewijs van verbeterde overleving of verminderde metastase. Adjuvante chemotherapie voor rectale en colon adenocarcinoom verminderd het risico op de dood met 30%. De toevoeging van oxaliplatine en bevacizumab blijken zeer positief te zijn. Alle patiënten die chirurgisch zijn behandeld worden vijf jaar gevolgd met colonscopie, CEA metingen en CT scanning op levermetastasen.

    Gevorderde colorectale kanker wordt palliatief behandeld met 5-FU en folinezuur, met aanvulling van irinotecan of oxaliplatine. Vaak treden levermetastasen en die kunnen worden verdwijderd met partiële hepatoëctomie. De behandeling van anale kanker bestaat meestal uit chemoradiotherapie met mitomycine-C en 5FU, gevolgd door chirurgie.

    Wat zijn mogelijke cardiovasculaire ziekten? - Chapter 23

    Wat zijn mogelijke cardiovasculaire ziekten? - Chapter 23

    Coronaire hartziekte

    Myocard ischemie ontstaat wanneer het hart naar behoefte onvoldoende zuurstof (en andere voedingsstoffen) binnen krijgt. Dit komt doordat de coronaire bloedstroom verminderd is. Deze coronaire obstructie kan ontstaan door bijvoorbeeld een trombus, embolie, anemie, hypotensie, etc. Een verhoogd zuurstofbehoefte ontstaat bij een verhoging in de cardiac output (CO) of bij hypertrofie van de hartspier. Myocard ischemie wordt meestal veroorzaakt door atherosclerose (aderverkalking). Atherosclerose leidt wereldwijd tot hoge mortaliteit.
    Atherosclerose ontstaat door een samenspel van ontsteking en ophoping van lipiden, macrofagen en gladde spiercellen tot een plaque. Het ontstaan van atherosclerose wordt getriggerd door een beschadiging van gladde spiercellen in de vaatwand. Deze beschadiging ontstaat bijvoorbeeld door langdurige mechanische stress (hypertensie), biochemische afwijkingen (een hoog HDL, diabetes mellitus), immunologische factoren (radicalen door roken), ontsteking (door een infectie) en genetische factoren.

    Het ontstaan van atherosclerose begint dus bij een endotheel dysfunctie. Endotheelcellen raken permeabel, waardoor er vrij gemakkelijk een ophoping van lipiden kan ontstaan. Vervolgens worden deze lipiden weer opgenomen door macrofagen. Uiteindelijk ontstaan er grote vettige cellen (foam cells). Macroscopisch zijn deze laesies zichtbaar als gelige lijnen. Vervolgens worden er bij deze laesies cytokines en groeifactoren (TGF-beta) vrijgegeven door de macrofagen. Hierdoor ontstaat er een verdere ophoping van macrofagen en migratie en proliferatie van gladde spiercellen. Deze spiercellen produceren grote hoeveelheden collageen. Dit collageen wordt als het ware een groot complex met de macrofagen en lipiden, waardoor er uiteindelijk een plaque kan ontstaan. Er zijn twee verschillende processen die een trombose kunnen veroorzaken:

    1. Het eerste proces waarbij er sprake is van oppervlakkige endotheel-schade

    2. Het tweede proces waarbij er sprake is van diep endotheel-schade.

    Bij 50% reductie (van de diameter van het bloedvat) is er al sprake van stenose. Obstructie van de coronaire vaten kan leiden tot verschillende klinische symptomen: (in)stabiele angina pectoris of een myocard infarct.

    Wanneer een patiënt eenmalig last heeft gehad van atherosclerose (bijvoorbeeld een myocard infarct heeft gehad), is de kans op een recidief groot. Dit recidief hoeft zich echter niet te uiten op een MI, maar kan bijvoorbeeld ook een beroerte zijn. Atherosclerose kan daarnaast ook asymptomatisch verlopen.

    Zoals hierboven is benoemd is het ontstaan van atherosclerose multifactorieel. Er zijn dus veel verschillende risicofactoren voor het ontstaan van atherosclerose. Traditionele risico factoren voor het ontstaan van atherosclerose zijn:

    • Leeftijd: Een hoger risico wanneer men ouder wordt. Bij ouderen ontstaan atherosclerose voornamelijk door een toename van calcificatie.

    • Geslacht: Mannen hebben een hoger risico dan premenopauzale vrouwen. Na de menopauze hebben juist vrouwen een verhoogd risico. Waarschijnlijk speelt oestrogeen hierin een belangrijke rol.

    • Familiegeschiedenis: In sommige families is er een hoge prevalentie van atherosclerose. Een positieve familiegeschiedenis is een risicofactor.

    • Roken: 20% van de overlijdensgevallen door coronaire hartziekten wordt bij mannen veroorzaakt door rookgedrag, bij vrouwen is dit percentage iets lager (17%). Stoppen met roken geeft een reductie op dit risico met 25%. Wanneer een patiënt meer dan 10 jaar gestopt is met roken, is het risico ten opzichte van ‘nooit rokers’ gelijk.

    • Dieet en obesitas: Een vet- en zoutrijk dieet leidt tot een verhoogd risico. Het voldoende eten van fruit en groenten leidt juist tot een verlaagd risico.  

    • Gewicht: Overgewicht en obesitas zijn risicofactoren. Afvallen daarentegen is niet altijd zinvol. Wanneer er namelijk vooral visceraal vet aanwezig is (centraal vet) kan dit alsnog een verhoogd risico met zich meedragen. Het is dus aan te raden niet alleen naar het gewicht te kijken, maar vooral naar de taille/heup verhouding.

    • Lichaamsbeweging: Onvoldoende lichaamsbeweging is een risicofactor. Aangeraden wordt om als volwassenen minimaal 30 minuten per dag intensief te bewegen.

    • Hypertensie: Zowel een verhoogde systolische (>140 mmHg) en een verhoogde diastolische (>90 mmHg) zijn risicofactoren.

    • Hyperlipidemie: Een verhoogd cholesterol (met name HDL) is een risicofactor in het ontstaan van coronaire hartziekten. Er zijn verschillende richtlijnen voor de cholesterolspiegels, echter wordt er meestal naar een waarde lager dan 6 mmol/L gestreefd. Statines en een (vetarm) dieet kunnen de cholesterolspiegel verlagen.

    • Diabetes Mellitus.

    • Psychische omstandigheden: depressie, stress en weinig sociale steun zijn risicofactoren.

    • Alcohol: een verhoogde alcoholinname is een risicofactor. Echter, een inname van 1 of 2 alcoholische drankjes op een dag is juist een beschermende factor.

    • Genetische factoren.

    • Coagulatie factoren: een hoog serum fibrinogeen en stollings factor V|| leiden tot een verhoogd risico. Dit komt doordat het stollingsproces in deze omstandigheden eerder plaatsvindt.

    • NSAIDS.

    Maar welke patienten hebben daadwerkelijk een verhoogd risico op het krijgen van coronaire hartziekten? Preventiemaatregelen moet men treffen bij elke patient met: een cholesterolwaarde >8 mmol/L, LDL cholesterol >6 mmol/L, bloeddruk >180/110 mmHg, diabetici en een patient met eeen medische voorgeschiedenis met daarin atherosclerotische ziekten.

    Angina pectoris

    De diagnose angina pectoris (a.p.) wordt meestal gesteld aan de hand van de anamnese. Typische klachten van a.p. zijn: strakke, hevige pijn op de borst, centrale/retrosternale pijn, uitstraling naar de armen, uitlokking bij lichamelijke activiteiten/koud/angst/spanning, afname van de pijn in rust. Soms kan er ook sprake zijn van zweten en angst. A.p. kan stabiel of onstabiel zijn. Wanneer er sprake is van een bestaand/langer durend symptoom spreekt men van een stabiele a.p. Een nieuw ontstaande episode (binnen 24 uur), of een progressieve toename van klachten wordt een instabiele a.p. genoemd.

    Over het algemeen zijn er geen klinische afwijkingen bij a.p.. Echter, kan er soms een vierde harttoon gehoord worden. Tijdens een aanval van a.p. kunnen er ST elevaties zichtbaar zijn op een ECG. Patienten met a.p. moeten uitgebreide informatie krijgen over zijn/haar ziekte. Met name het bespreken van de verschillende risicofactoren zijn erg belangrijk (bijvoorbeeld stoppen met roken en een vetarm dieet). Er bestaat een bepaald algoritme voor patienten met een stabiele a.p. Ten eerste moeten patienten informatie krijgen over a.p., krijgen zij een kortwerkend nitraat (meestal sublinguaal) voorgeschreven of een beta-blokker of een calcium-kanaal-blokker. Wanneer de klachten niet afnemen kan er voor gekozen worden om een langwerkend nitraat toe te dienen.

    Revascularisatie kan doormiddel van een percutane coronary intervention (PCI) uitgevoerd worden. Bij PCI wordt er een soort ballonnetje en een stent in de kransslagader gebracht. Deze benodigdheden komen in de arteriële circulatie door de femoraal/radiaal/brachiaal arterie. PCI wordt ook wel dotteren genoemd. Naast deze dotterbehandeling kan er door middel van een bypass ook revascularisatie gegenereerd worden. Bij een bypass wordt er een anastomose gemaakt tussen de ascending aorta en de plek distaal van de stenose. Coronaire revascularisatie (een dotter interventie of een bypass operatie) is alleen geïndiceerd in hoog-risico patiënten.

    Acuut coronair syndroom

    Drie verchillende diagnoses vallen onder het acuut coronaire syndroom:

    1. ST-elevatie myocard infarct (STEMI)

    2. Niet-ST-elevatie myocard infarct (NSTEMI)

    3. Onstabiele angina pectoris (UA)

    Deze drie diagnoses hebben het zelfde onderliggende mechanisme, namelijk ruptuur of erosie van de fibreuze kap van een coronaire arterie plaque. Dit leidt tot plaat aggregatie, plaat adhesie, gelokaliseerde trombose en vasoconstrictie. Een dunne fibreuze kap en een hoog percentage lipiden in de plaque leidt tot een verhoogde kans op een ruptuur van de plaque. Trombus formatie en vasoconstrictie leidt tot ischemie van de hartspier (door de verminderde bloedvoorziening).

    De klinische symptomen van een acuut coronair syndroom zijn: nieuwe of toenemende pijn op de borst, pijn op de borst in rust of progressie van een bestaande a.p.. Bij een acuut coronair syndroom kan de ECG normaal zijn, echter ziet men vaak ST depressie en T-top inversie. Daarnaast kan de diagnose aan de hand van biochemische markers gesteld worden. Bij een acuut coronair syndroom is er troponine in het bloed detecteerbaar. Een waarneembare troponine pleit dus voor myocard-ischemie. Hoe hoger de troponine levels, hoe ernstiger de MI is. Daarnaast wijzen CK-MB en myoglobine spiegels op de diagnose acuut coronair syndroom. Echter, bij sommige individuen is er standaard CK-MB detecteerbaar (bijvoorbeeld bij mensen met een spierziekte).

    Bij een acuut coronair syndroom speelt plaatjes aggregatie een belangrijke factor. Er zijn echter geneesmiddelen die ingrijpen op dit proces. Aspirine blokkeert bijvoorbeeld de formatie van thrombozane A2. Hierdoor voorkomt aspirine de aggregatie van plaatjes. Een ander voorbeeld is clopidrogrel. Clopidrogrel remt de activatie van het GP||b/|||a complex wat de aggegratie start. Hierdoor voorkomt ook clopidrogrel aggregatie van plaatjes. Daarnaast zorgt heparine ook voor een reductie in mortaliteit ten gevolgen van een acuut coronair syndroom.

    Beta-blokkers verlagen het hartritme en de bloeddruk. Dit komt doordat beta-blokkers catecholamines blokkeren. Hierdoor daalt de zuurstofbehoefte van het hart. Beta-blokkers kunnen intraveneus of oraal toegediend worden. Nitraten verlagen de preload van het hart en veroorzaken vasodilatatie. Nitraten worden meestal voorgeschreven bij angina pectoris.

    Bij patienten waarbij een acuut coronair syndroom vastgesteld is, worden frequent ACE-remmers en statines voorgeschreven.

    Myocard infarct (MI) kan gediagnosticeerd worden aan de hand van een ECG en een stijging van troponine 1 & T en het CK-MB. Er zijn drie verschillende typen MI:

    1. Type 1: spontane MI (bijvoorbeeld door een plaque erosie)

    2. Type 2: MI door een verhoogd zuurstof behoefte, maar een te lage zuurstof voorziening (hypertensie, anemie, arythemie).

    3. Type 3,4,5: MI dat ontstaan is na een dotter interventie of ten gevolge van een bypass operatie.

    ST elevatie myocard infarct (STEMI)

    Een myocard infarct ontstaat wanneer het hart te lang geen/onvoldoende zuurstof ontvangt. De diagnose STEMI kan gesteld worden aan de hand van een anamnese, ECG, troponine I & T en CK-MB. Bij elke patiënt met ernstige pijn op de borst, die langer aanhoudt dan 20 minuten, moet er aan een MI gedacht worden. Daarnaast kan de pijn uitstralen naar de linkerarm, nek of naar de kaak. Atypische klachten die kunnen ontstaan bij een MI zijn: koorts, benauwdheid, zweten of klam aanvoelen. Bij een MI kan er overigens zowel sprake zijn van bradycardie als tachycardie.

    ECG

    Wanneer een patient verdacht wordt op het hebben van een MI, moet er standaard een ECG gemaakt worden. Wanneer er op dit ECG geen afwijkingen zichtbaar zijn, maar de klachten aanhouden moet er elke 15 minuten opnieuw een ECG gemaakt worden. Maar wat betekenen de afwijkingen in het ECG precies?

    • ST elevaties in V1-V3 (die ontstaan door de opening van Kalium kanalen), duiden op een anterieur MI.

    • ST elevaties in ||, ||| en AVF duiden op een inferieure origine van het MI.

    • Afwijkingen in |, AVL, V5 en V6 wijzen op een laterale MI.

    • ST depressie in V1-V3 en ST elevatie in V5,V6 duiden op een posterior MI.

    Naast het maken van een ECG kunnen er ook bloed samples gebruikt worden om de diagnose MI vast te stellen. Er wordt vooral gekeken naar de troponine I en T levels. Hoe hoger de troponine levels, hoe groter het MI is; hoe meer schade de hartspier heeft.

    STEMI’s kunnen naast een Ventrikel septum defect, ook mitralis klep insufficiëntie veroorzaken. Mitralis klep insufficiëntie kan op drie manieren veroorzaakt worden:

    1. Ernstige linker ventrikel dysfunctie en dilatatie.

    2. MI in de inferieure wand (waardoor de papillaire spieren aangetast worden)

    3. MI in de papillaire spieren zelf.

    STEMI’s veroorzaken frequent aritmieën (met name ventriculaire tachycardie en ventrikelfibrillatie). Ventrikel tachycardie moet behandeld worden met intraveneuze toediening van beta-blokkers. Ventrikelfibrillatie wordt behandeld doormiddel van een schoktoediening (AED). Daarnaast kan er boezemfibrillatie ontstaan. Ook dit wordt behandeld met beta-blokkers. Naast deze bovengenoemde aritmieen ontstaat er frequent een AV-blok. Het ontstaan van een AV-blok kan een indicatie zijn om een pacemaker te plaatsen.

    Nadat een patient een acuut coronair syndroom heeft gehad, vindt er revalidatie plaats. Meestal vindt dit proces plaats in speciale centra. Het hanteren en reduceren van bepaalde risicofactoren speelt in dit revalidatieprogramma een hoofdrol (gezond dieet, stoppen met roken, voldoende bewegen, etc). Naast dit gedrag-gerichte programma, krijgt de patient uitleg over zijn/haar medicatie. Beta-blokkers, aspirine, ACE-remmers, statines en aldosteron antagonisten worden frequent voorgeschreven bij patiënten die de diagnose acuut coronair syndroom hebben gekregen.

    Pheripherale vaatziekte

    Perifere vasculaire ziekten (PVZ) worden meestal veroorzaakt door atherosclerose, waarbij over het algemeen de aorta-iliaca en infra inguinale arteriën zijn aangedaan. PVZ kan worden geclassificeerd in:

    • Stadium I – asymptomatisch

    • Stadium II – claudicatio intermittens

    • Stadium III – rustpijn, ofwel nachtelijke pijn

    • Stadium IV – necrose, ofwel gangreen

    Onderbeen ischemie

    Ledemaat ischemie kan worden geclassificeerd als chronisch of acuut. Bij chronische onderbeen ischemie is de onderbeen koud met een droge huid en haargebrek. Pulsen kunnen zijn afgenomen of afwezig zijn en ulceratie met donkere ontkleuring van tenen kan optreden. Het abdomen moet worden gecontroleerd op een aneurysma. Risicofactoren zijn roken, diabetes, hypercholesterolemie en hypertensie.

    Diagnostiek van chronische en acute onderbeen ischemie bestaat uit onderzoek van pulsen en bepaling van de enkel/brachiale drukindex (ABPI) door Doppler in de tibiale arteriën in vergelijking met de brachiale arteriën. Calcificatie geeft een verhoogde ABPI. Diagnostische beeldgeving bestaat uit digitale subtractie angiografie (DSA), duplex ultrasound, 3D-contrast magnetische resonantie angiografie en berekende tomografie angiografie.

    Alle patiënten met PVZ krijgen een risicofactor management. Geadviseerd wordt om te stoppen met roken en obesitas te vermijden. Diabetespatiënten krijgen pedicure en een diabetisch management. Patiënten met een cholesterol boven de 3,5 mmol/L krijgen een statine therapie. Lage dosering aspirine verlaagd het risico op myocardinfarct (MI) en beroertes. Onderbeen ischemie wordt behandeld met cilostazol, die cyclisch AMP niveaus verhoogt, wat leidt tot vasodilatatie en vermindering van bloedplaatjes aggregatie. Naftidrofuryl is een vasodilatator die vasculaire en bloedplaatjes 5-HT2 receptoren blokkeert.

    Patiënten met acute onderbeen ischemie hebben klachten van pijn, pallor (witkleuring), paraesthesie, paralyse en koudheid met (gemarmerde) vlekken. Acute ischemie kan ontstaan door embolie of trombose. Embolie komt vaak door een cardiale trombus en hartritmestoornissen. Een acute trombose is meestal het gevolg van een chronische atherosclerotische stenose. Patiënten kunnen mogelijk met heparines behandeld worden. Patiënten met embolie, gevolgd door MI en atriumfibrilleren krijgen warfarine. Een embolus kan chirurgisch verwijderd worden (embolectomie) en een patiënt kan een bypass graft (transplantatie) van een bloedvat krijgen. Een amputatie kan verleend worden bij een ernstige onherstelbare ischemie.

    Aneurysma

    Aneurysmata worden geclassificeerd in ware en valse. Een aneurysma wordt gedefinieerd als een permanente dilatatie van een arterie tot tweemaal de normale diameter. In ware aneurysmata vormt de arteriële wand de aneurysmawand en bij valse aneurysmata vormt het omliggende weefsel de aneurysmawand.

    Een abdominale aorta aneurysma (AAA) bevindt zich infrarenaal en retroperitoneaal en treedt vaak op als gevolg van atherosclerose, een infectie, trauma of door een genetisch syndroom. De meeste aneurysmata zijn asymptomatisch en worden per toeval gevonden met X-ray. Snelle groei of scheuring kan zorgen voor ernstige epigastrische pijn. Een breuk veroorzaakt hypotensie, tachycardie, anemie en mogelijk de dood. Geleidelijke erosie kan leiden tot rugpijn. Aneurysmata kunnen obstructie van omliggende structuren veroorzaken.

    Er bestaat een screeningsprogramma voor mannen boven de 65 jaar en personen op een vroege leeftijd bij verhoogd risico. Een diagnose kan worden gesteld door middel van MRI of CT. Een operatie wordt uitgevoerd als de diameter groter is dan 5,5 cm, meer dan 1 cm per jaar groeit en symptomatisch is. Chirurgisch wordt een Dacron of Gore-Tex graft ingebracht. Ook kan niet-chirurgisch een endovasculaire stent in worden gebracht. Laparoscopische chirurgie wordt soms verricht. De follow-up bestaat uit controle op hypertensie, het stoppen met roken en lipide-verlagende medicatie.

    Een thoraco-abdominale aneurysma kan optreden bij patiënten met Marfan syndroom, hypertensie of syfilis. Meestal zijn de klachten asymptomatisch, maar er kan pijn in de borst ontstaan met stridor, hemoptyse en heesheid. De identificatie kan met een CT of MRI-scan, aortografie en transoesofageale echocardiografie. Een operatie of stent wordt uitgevoerd bij een aneurysma groter dan 6 cm.

    Acute aortasyndromen, waaronder aortadissectie, intramurale hematoom (IMH) en indringende aortazweren, beginnen meestal met een scheurtje in de intima waar bloed door penetreert. IMH treedt meestal op in de thoracale aorta. Aortadissecties worden verdeeld in type A, waaronder aortaboog en aortaklep proximaal links van de subclavia arterie, en type B, waaronder de thoracale aorta distaal van de linker subclavia arterie.

    De patiënt presenteert zich meestal met zeurende borstpijn, uitstralend naar de rug en armen en mogelijk neurologische symptomen door bloedverlies. Type A zal chirurgie met aortaboog vervanging moeten ondergaan. Type B dissecties hebben een betere prognose en kunnen met medicatie behandeld worden. Soms wordt er nog een endovasculaire stent geplaatst. Met CT en MRI-scan wordt er controle gehouden.

    Raynaud’s fenomeen bevat spasmen van arteriën in de vingers (of tenen) zonder onderliggende oorzaak. Vasoconstrictie leidt tot pallor en cyanose, gevolgd door roodheid. Een aanval kan soms uren duren, met klachten van verdoofde, pijnlijk brandende vingers. De patiënt moet handschoenen en warme kleding dragen en stoppen met roken. Vasodilatators worden soms voorgeschreven.

    Perifere veneuze ziekten

    Pijnlijke varicose venen worden behandeld met een injectie of chirurgie. Veneuze trombosen treden het meest op in de benen of bekken. Oppervlakkige tromboflebitis (infectie van de vaatwand) in de benen gaat vaak gepaard met varicose, vaak door een trauma. Vaak is een pijnlijke, zachte, rode, gezwollen, koordachtige structuur gevonden. Vaak helpt een symptomatische behandeling met elevatie van het been en analgetica.

    Diepe veneuze trombose treedt op na perioden van immobilisatie. De patiënt is mogelijk asymptomatisch of heeft pulmonale embolie met een pijnlijke kuit en gezwollen rode venen. Klinische diagnose wordt verkregen door middel van D-dimeer niveaumeting, B modus veneuze compressie, ultrasonografie of Doppler ultrasound. Onder de knie kan alleen worden gedetecteerd met venografie met contrast. Het doel van de behandeling is om pulmonale embolie te voorkomen. Anticoagulatie therapie met bedrust wordt aangeraden. Vaak worden laag-moleculair gewicht heparines (LMWH) gegeven en anders warfarine of trombolytische therapie. Patiënten krijgen steunkousen voor het leven.

    DNA-schade, reparatie en mutatie - Vrieling - Artikel

    DNA-schade, reparatie en mutatie - Vrieling - Artikel

    Inleiding

    Tijdens de S-fase start de replicatie in zogenaamde replicatie origins. Prokaryoten hebben één origin op het chromosoom, terwijl dit er bij eurkayoten meerdere zijn. Na het initiatiesignaal, komen er replicatiefactoren op het origin te zitten, zorgt helicase voor het openen van de helices en kan de rest van de replicatie machine, waaronder polymerase, zich binden. Het polymerase kan alleen van ‘5 -> ‘3 synthetiseren. Een primase voor een RNA primer, met een 3’ hydroxyl basepaar einde, bindt om polymerisatie te starten. De leading strand kan continu doorgaan met repliceren, terwijl de lagging strand uit korte losse Okazaki fragmenten bestaat. Vervolgens worden de RNA primers vervangen door DNA en kan ligase de fragmenten aan elkaar maken. Proofreading door het polymerase zelf vermindert het aantal fouten door fout geplaatste nucleotiden te verwijderen. Als mismatch repair (MMR), door middel van een exonuclease, daarna nog overgebleven fouten herkent, vernietigt het de nieuw gevormde strand gedeeltelijk.

    Mutaties

    Mutaties zijn permanente veranderingen in de nucleotidesequentie. Spontane mutatie kan ontstaan als nucleotiden een abnormaal basenpaar vormen. Dit komt doordat iedere base een tautomeer, structurele isomeer, heeft. Doordat de tautomeer na replicatie weer in zijn normalere vorm verandert, leidt dit tot een mismatch. Niet gerepareerd kan dit tot een mutatie leiden bij de volgende replicatie. Onder de basenpaar substituties vallen transities en transversies. Als een pyrimidine of purine door een base uit dezelfde groep wordt vervangen, noemen we het transitie. Verandert een base in een base uit de andere groep is er sprake van een transversie. Zo’n mutatie komt lang niet altijd tot uiting. Het slippen van de template of nieuw gesynthetiseerde streng kan ook tot replicatiefouten leiden, doordat dit meestal tijdens het kopiëren van een repeat. Dit leidt tot insertie of deletie van één of twee basen in de DNA sequentie en in de meeste gevallen tot een frame shift mutatie als het zich in de coderende regio van een gen bevindt.

    Endo- en exogene bronnen kunnen ook spontaan verlies of schade aan basen veroorzaken. De intrinsieke instabiliteit van het DNA leidt spontaan tot deaminatie en depurinatie, het verlies van base en daarmee creatie van een (AP) site. Endogene bronnen leiden onder tot oxidatie en methylatie. Exogene bronnen, die schade toebrengen, zijn ioniserende straling (X-rays), uv-licht en sigarettenrook. Ioniserende schade zorgt voor enkel- en dubbel strand breaks, gemodificeerde DNA basen en apurinische locaties (purine is verwijdert). Uv-licht veroorzaakt vooral covalente bindingen tussen naast elkaar gelegen pyrimidines.

    Omvangrijke DNA additieproducten, ontstaan door uv-licht of chemische endogene stoffen, verstoren de DNA helix, waardoor het niet goed meer gerepliceerd kan worden. Bij Cross-links zijn ook twee basen verbonden op dezelfde streng (intrastrand) of van verschillende strengen (interstrand) en heeft dezelfde gevolgen. Er zijn verschillende DNA herstel pathways, die DNA laesies al herkennen en verwijderen vóór de replicatiefase. Anders kan het cellulaire processen als transcriptie en replicatie verstoren met als gevolg het stilleggen van de celcyclus of geprogrammeerde celdood of veroorzaakt het mutaties.

    • Direct herstel:

    Photolyasen zijn enzymen, die fotoproducten van uv-licht in hun oorspronkelijke vorm kunnen omzetten (niet in zoogdieren). Andere enzymen, waaronder O6-methyl-G DNA methyltransferase (MGMT), haalt de alkyl groep van de base af en bindt het zelf aan zijn eigen polypeptideketen, waarna het inactief wordt en zichzelf vernietigt.

    Excisie reparaties

    Base excisie repair (BER)

    Laesie-specifieke DNA glycosylasen hydrolyseren de base-suiker verbinding en verwijderen zo de beschadigde purine of pyrimidine uit het DNA. AP endonuclease creëert vervolgens een enkel strand break in de backbone. Polymerase β pakt het benodigde nucleotide, dRPase verwijdert de ‘oude’ suiker-fosfaatgroep (backbone). DNA ligase verbindt de keten met de nieuwe nucleotide.

    Nucleotide excisie repair (NER)

    NER verwijdert vooral mutagene en toxische DNA laesies en herkent vooral de veranderde confirmatie in plaats van de laesie zelf. NER substraten zijn o.a. PAHs, UV geïnduceerde CPDs en (6-4)PPs. XPC-HR23B zorgt voor herkenning van de DNA schade, XPA verifieert dit en RPA is het enkel strand DNA bindingscomplex. Vervolgens wordt de helix geopend en de laesie begrenst. Incisies aan beide kanten van de laesie zorgen voor verwijdering van de beschadigde DNAstreng (excisie), waarna streng weer wordt gerepliceerd door polymerase (reparatie synthese), opgevuld en aan elkaar gebonden door ligasen (ligase). Er zijn twee typen NER, die werken volgens hetzelfde mechanisme, maar met een andere initiatie van schade herkenning. Global Genome Repair (GGR) herstelt DNA schade overal in het genoom, terwijl Transcriptie-Coupled Repair (TCR) op actieve genen op de strand waar transcriptie plaatsvindt effectiever hersteld.

    NER is vooral een belangrijke verdedigingsmechanisme tegen de effecten van uv-licht. Een defect in een van de betrokken eiwitten kan dan ook leiden tot een van de volgende recessieve syndromen: xeroderma prigmentosum, syndroom van Cockayne en trichothiodistrofie.

    Dubbel strand break (DSB) herstel

    Exo- en endogene factoren kunnen dubbel strand breaks veroorzaken, wat de transcriptie en replicatie na dit punt blokkeert. Dit kan leiden tot degradatie en daarmee het verlies van genetische informatie. Het herstel gaat via twee pathways.

    Homologe recombinatie (HR)

    Genetische informatie wordt afgelezen van een ander homoloog chromosoom, meestal een zusterchromatide. Hierbij kan cross-over of omkering van genen optreden. Zie artikel blz. 9 voor een duidelijk plaatje

    Single strand annealing (SSA)

    is een subpathyway, waarbij korte repeat sequenties de break markeren. Deze repeat units vormen een basenpaar, de niet-complementaire ssDNA uiteinden worden eraf geknipt en er vindt ligatie plaats.

    Niet-homologe end joining (NHEJ)

    Een heterodimer bindt simpelweg de twee eindes rond de break aan elkaar vast. Dit proces leidt dan ook vaak tot verlies van genetische informatie of translocatie. Afhankelijk van het soort of het stadium in de celcyclus vindt er HR dan wel NHEJ plaats. HR is namelijk vooral effectief tijdens de S- en G2-fase, als er al zusterchromatiden zijn gevormd. NHEJ speelt een belangrijke rol tijdens G0 en G1. Op de overgang G1-S en G2-M zijn belangrijke checkpoints van de celcyclus.

    Mismatch herstel (MMR)

    Replicatiefactoren en mismatch eiwitten herkennen de mismatch, die tijdens replicatie is ontstaan. Vervolgens maken de eiwitten een incisie, zorgt exonuclease voor het verwijderen van de nieuw gevormde strand en DNA polymerase hervat de replicatie. Als DNA herstel mechanismen de schade niet kunnen herstellen, moet de cel een bypass vormen voor DNA laesies om celdood te voorkomen. Er zijn twee pathways om dit te doen:

    DNA schade vermijden

    Een replicatievork, ontstaan door DNA schade, op de template streng stopt de replicatie. De nieuwe strand van de dichtbijgelegen zusterchromatide zal dan als template dienen om toch het stuk geblokkeerd DNA te repliceren. Na de bypass leest de nieuwgevormde streng weer van de oorspronkelijke templatestreng af.

    Translaesie synthese (TSL)

    Het replicatie polymerase delta/epsilon kan niet langs een beschadigt nucleotide en wordt vervangen door een TSL polymerase. Deze is niet zo specifiek voor de template en kan daarom over het beschadigde nucleotide heen repliceren. Na het bypassen van de schade, neemt het replicatie polymerase het weer over. Doordat TSL niet specifiek is, bouwt het soms het verkeerde nucleotide in, wat in de volgende replicatiecyclus tot een mutatie leidt. Het is dus een grote oorzaak voor mutaties, maar voorkomt celdood. Hierdoor kan het ook kanker veroorzaken.

    Op basis van de veranderingen, die ze teweeg brengen, kun je mutaties classificeren.

    Puntmutaties/Intragene mutaties

    Deze ontstaan door substitutie van een basepaar voor een ander (transitie/transversie) of de additie/deletie van een klein aantal basenparen, wat tot frameshifts leidt. Een mutatie in het coderende deel, noemen we ook wel een intragene mutatie, omdat het meestal maar effect heeft op één gen. Een nonsense mutatie veroorzaakt een stopcodon en daarmee verminderde functie van het eiwit. Een missense mutatie veroorzaakt de verandering van één aminozuur en kan verminderde functie met zich mee brengen, maar het kan ook ongemerkt gaan. Een framshift veroorzaakt vaak een stopcodon en een eiwit met verminderde functie.

    Chromosomale mutaties

    Dit zijn deleties, tussenvoegingen, omzetting of duplicaties in het coderende deel van meerdere genen. Samenvoegen van gebroken chromosomen of abnormale distributie over de dochtercellen tijdens het scheiden van de chromosomen is meestal de oorzaak. Deze mutaties kunnen vaak leiden tot een verlies van heterozygositeit (LOH). Veel mutagene events hebben LOH tot gevolg, wat weer nauw samenhangt met het ontstaan van kanker.

    Signaal transductie pathways, die de celcyclus stopzetten of apoptose induceren, zijn essentieel voor alle beschermingsmechanismen. Checkpoints van G1-S, tijdens de S-fase en van G2-M kunnen de celcyclus tijdelijk stopzetten, zodat de schade kan worden hersteld (cell cycle arrest).

    Bij te ernstige schade gaat de cel dood of in een irreversibele verouderingsachtige staat. Cycline afhankelijke kinasen reguleren de progressie van een cel. Het p53 tumor suppressor gen is betrokken in de controle van checkpoints. Een deficiëntie leidt dan ook tot het verlies van het G1/S checkpoint. Het ATM gen veroorzaakt de ziekte ataxia telangiectasie en is een upstream regulator van p53. Na ioniserende straling stabiliseert en activeert het namelijk p53. P53 speelt ook een rol bij de apoptose om mutagene consequenties te vermijden.

    Mutaties in genen die betrokken zijn bij de reparaties van mutaties kunnen op verschillende manieren tot uiting komen:

    1. De functie kan worden overgenomen door andere genen, komt niet tot uiting.

    2. Wanneer beide allelen gemuteerd zijn, ontstaan ernstige ontwikkelingsstoornissen.

    3. De mutatie van beide allelen is niet verenigbaar met het leven.

    4. Heterozygoot geeft ontwikkelingsstoornissen omdat de concentratie van het genproduct in de cel belangrijk is.

    Normale hematopoiese en hematologische maligniteiten - Marijt & Veelken - Artikel

    Normale hematopoiese en hematologische maligniteiten - Marijt & Veelken - Artikel

    Inleiding

    Tijdens de 3e week van de zwangerschap worden hematopoietische cellen aangemaakt. De daadwerkelijke productie van bloedcellen in het beenmerg vindt echter pas plaats na 5 maanden. Het beenmerg bevindt zich in de holtes van wervels, ribben, het sternum, bekken, de schedel, schouderbladen en proximale delen van de humeri en femora. Deze mergholtes zijn deels verdeeld in compartimenten, wat een labyrint creëert van communicatieplaatsen.

    Zuurstofrijk bloed bereikt de bloedvormende cellen in het beenmerg via arteriën die aansluiten op het brede veneuze sinus systeem. Megakaryocyten en erytropoietische eilanden liggen dichtbij de veneuze sinussen, net als de gesegmenteerde granulocyten zodat ze goed aan de bloedcirculatie afgegeven kunnen worden.

    Normale hematopoiese

    Het principe van hematopoiese is dat alle cellen van één (pluripotente) cel afkomstig zijn. Deze cel is in staat om tijdens deling zichzelf te vernieuwen én een dochtercel te vormen, die kan differentiëren. Het bestaan van een pluripotente cel kan een belangrijke rol spelen binnen transplantatie. Onder bepaalde omstandigheden vormen cellen van allerlei differentiatielijnen zogenaamde ‘colony forming units’ (CFU). Deze worden genoemd naar de celserie. Zo duidt BFU-E en CFU-E op erythroïde stamcellen en CFU-GM op de serie van granulocyten en monocyten. Om een bepaald type cel te cultiveren zijn speciale condities nodig, zoals hematopoietische groeifactoren. Erytropoietine (EPO) is een hormoon voor gedifferentieerde cellen in de erytrocytische lijn. Ook de CFU-GM serie heeft groeihormoon nodig, wat monocyten, lymfocyten, endotheelcellen en fibroblasten kunnen produceren. Trombopoietine heeft invloed op de groei en differentiatie van megakaryocytische voorlopercellen tot trombocyten. Cellen, die later in de differentiatielijn gelegen, zijn ook in staat om zich te delen in een zelf-vernieuwende en een dochtercel. Als er vraag is naar een bepaald type cel, gaat dat cel compartiment zich delen en differentiëren. Als dit defect is, zorgen de pluripotente stamcellen voor vernieuwing van het compartiment.

    Oorsprong, kinetica en regulatie van leukocyten

    Fagocyterende cellen beschermen tegen infecties en maligniteiten en endocyteren antilichamen, necrotisch weefsel en verouderde cellen. Monocyten kunnen zich ontwikkelen tot macrofagen, histiocyten (meer gespecialiseerd in productie van cytokinen) of dendrietcellen (presenteren antigenen).

    Gesegmeneerde granulocyten blijven een paar dagen in het beenmerg, waarna ze een paar uur in het bloed circuleren en vervolgens de weefsels ingaan. De differentiatie van myelocyt tot gesegmenteerde granulocyt duurt minstens 48 uur. In het beenmerg bevindt zich een postmitotisch compartiment als opslagplaats voor gesegmenteerde fagocyten. Na 3-5 dagen gaan ze op basis van leeftijd de circulatie in. Neutrofiele granulocyten hebben een levensduur van 5.5 dagen en worden in de circulatie iedere 6 uur vervangen.

    Verhoogde marginatie, adhesie tussen de granulocyten, en versnelde levering van neutrofiele granulocyten zorgt tijdens de granulocytreactie voor neutropenie. Binnen een uur komen dan ook grote aantallen neutrofielen uit het postmitotische compartiment de circulatie in. Onder mononucleaire fagocyten vallen monocyten, macrofagen en hun voorlopercellen. Monocyten verlaten het beenmerg binnen 24 uur, circuleren een tijdje rond en differentiëren vervolgens in het weefsel tot macrofagen of meer gespecialiseerde cellen.

    B- en T-cellen hebben beide een vroege fase waarin actieve deling van voorlopercellen plaatsvindt. Vervolgens een fase van circuleren in het bloed en in de laatste fase vindt activatie en proliferatie plaats in perifere lymfeweefsels. T-cellen ontwikkelen zich al wel in de thymus tot T-helper en T–suppressor cellen. Het aantal leukocyten in het bloed ligt normaal rond de 10 X 109/L. Leukocytopenie is een tekort aan leukocyten. Neutrofiele granulocytose, of neutrofilie is een overschot aan neutrofielen en bij een tekort spreek je van neutropenie.

    Hemato-oncologie

    Neoplasma/gezwellen in het beenmerg (myeloproliferatief) of in de lymfe (lymfoproliferatief) zijn vaak zichtbaar bij maligne afwijkingen van het bloed. Dit komt door klonale en vaak ongecontroleerde proliferatie. Je spreekt van leukemie als proliferatie met name in het beenmerg plaatsvindt. Is dit vooral in andere lymfeweefsels en zijn B- en T-cellen hierbij betrokken, spreekt men van een lymfoom.

    Maligne myeloïde stoornissen

    Dit ontstaat door klonale en autonome proliferatie. Wanneer dit gepaard gaat met een differentiatie stop, krijg je grote blasten en spreken we van acute myeloïde leukemie.

    Acute myeloïde leukemie (AML)

    Er is een maturatie defect in maligne stamcellen, die door de snelle expansie en ophoping van onvolwassen cellen ook in het bloed gaan circuleren. Dit zorgt voor onderdrukking van de normale bloedcelproductie en leidt zo tot ernstige anemie en trombocytopenie. Bij acute leukemie zie je dan ook symptomen als anemie en een toename van bloedingen of infecties. Pijn in de botten kan door de snelle expansie of necrose van botweefsel komen. Als er sprake is van acute premyeloïde leukemie (APL) zie je levensbedreigende bloedingen. APL cellen maken twee pro-coagulente factoren: Tissue factor (TF) en kanker procoaguland (CP). Er is meer fibrinolyse en verhoogde cytokineproductie.

    Mensen, die blootgesteld zijn aan ioniserende straling, lange tijd aan schadelijke stoffen in chemicaliën of intensieve chemotherapie, hebben een verhoogd risico op het krijgen van AML. Bij meer van de helft van de patiënten zijn cytogene veranderingen opgetreden in tumorcellen. Deze afwijkingen hebben een prognotische waarde.

    Leukemiecellen zijn gevoeliger voor chemotherapeutische stoffen dan gezonde cellen. Zo breng je remissie teweeg, waarna normale hematopoietische cellen prolifereren en migreren. Bij remissie inductie therapie wil je zo snel mogelijk het aantal leukemiecellen reduceren om de gezonde cellen zo kort mogelijk aan chemotherapie bloot te stellen en de periode waarin de patiënt geen goed werkend beenmerg heeft zo kort mogelijk te houden.

    Meer dan de helft van de patiënten bereikt een remissie (>99% uitgeroeid), al zijn er dan dus nog wel leukemiecellen aanwezig. Consolidatie behandelingen zijn gericht op het nog verder laten dalen van het aantal leukemiecellen. Dit resulteert uiteindelijk in de verwijdering van leukemie blasten. Cytotoxische medicijnen zijn enorm schadelijk voor hematopoietische stamcellen en het interstitieel epitheel, wat voor een aplastische fase zorgt. Tijdens deze fase is de kans op infecties, bloedingen en anemie vergroot. Er kan dan een ondersteunende behandeling van antibiotica en anti-fungale stoffen worden gegeven ter preventie van deze complicaties. Als het trombocyt- of hemoglobinelevel daalt, kun je dit behandelen met trombocyt suspensies of toedienen van erytrocyten.

    Remissie van AML duurt zelden lang met een gemiddelde overleving van 1.5-2 jaar na complete remissie. Anders is deze slechts een half jaar. Om dit te voorkomen krijgen patiënten met een gunstig kansprofiel nog een derde kuur en patiënten, met een ongunstige prognose of minimaal overblijfsel van de ziekte, allogene stamceltransplantatie (alloSCT). Om de maligne hematopoietische stamcellen te vervangen, moet de donor HLA-identiek zijn. Het bloed in de navelstreng is tevens een bron voor stamcellen. Bij autologe stamceltransplantatie komen de cellen van de patiënt, wat mogelijk is door de mogelijkheid van deze cellen om zich pluripotent te delen. Een subcutane injectie met haematopoietische groeifactoren zorgt voor mobilisatie van stamcellen in het beenmerg het perifeer bloed in. Je kunt ze ook onder verdoving uit het beenmerg verwijderen.

    Voor een succesvolle alloSCT is suppressie van het immuunsysteem nodig, wat gebeurt met behulp van een hoge dosis cytostatica of bestraling van het hele lichaam. Non-myeloablatieve conditionering onderdrukt alleen het immuunsysteem en heeft geen anti-leukemie effect. De belangrijkste problemen bij alloSCT zijn host-versus-graft (rejectie transplantaat) en graft-versus-host (‘rejectie patiënt) reacties en langdurige immuundeficiënties. Na transplantatie komt acute leukemie in 25% van de gevallen voor.

    T-lymfocyten spelen een belangrijke rol, doordat ze vreemde peptiden in HLA herkennen. Als alleen hematopoietische cellen deze peptiden presenteren, ontstaat een graft-versus-leukemie effect (GVL). Als alleen of ook normale cellen dit doen, krijg je een graft-versus-host ziekte (GVHD), waarbij de patiënt immunosuppressiva krijgt. T-cel depletie kan de kans op en de ernst van GVHD verminderen, maar het risico op infecties en een snelle relapse hiermee vergroten. Door T-cellen 3-6 maanden na de transplantatie weer toe te dienen, verklein je de kans op een recidief van de ziekte. Dit noem je ook wel donor lymfocyt infusie (DLI). Door de aanwezigheid van GVHD en/of het reductiepercentage cellen van de patiënt in het beenmerg te meten, kun je het effect bepalen. Tevens kun je een sensitieve tumor marker te gebruiken, die, indien positief, aanleiding geeft tot het toedienen van DLI. Het nadeel is dat AML zo snel kan terugkeren, dat je het niet meer kunt behandelen.

    Chronische myeloïde leukemie (CML)

    Dit is een aandoening, waarbij sterke proliferatie van de myeloïde stamcellen plaatsvindt. Je vindt een toename in onvolwassen, maar met name volwassen cellen. Patiënten hebben vaak lange tijd klachten als moeheid, malaise, nachtzweten, gewichtsverlies en splenomegalie. Soms zie je bij CML ook trombocytose.

    Bestraling kan CML induceren en bij alle patiënten is het Philadelphia chromosoom, een reciproke translocatie van chromosoom 22 naar chromosoom 9 en andersom, aantoonbaar. BCR (breakpoint cluster region) en ABL genen zijn hierbij betrokken.

    Het aantal leukocyten is verhoogd, er is een toename in de granulopoiese met een sterke linksverschuiving en abnormale megakaryopoiese. Zolang er maturatie plaatsvindt, spreken we van een chronische fase. Als er een maturatie blokkade ontstaat, krijg je een transformatie naar de actue fase. Je behandelt de chronische fase met tyrosine kinase remmers, die aan het BCR/ABL eiwit product binden en zo de functie en proliferatie blokkeren. Als de CML resistent wordt tegen deze therapievorm, ontvangen patiënten alloSCT. De acute fase behandel je net als AML, met daaropvolgend alloSCT. DLI bevattende allo-reactieve T-cellen geef je aan patiënten met een CML relapse.

    Maligne lymfatische stoornissen

    Deze stoornissen gaan vaak gepaard met vergrote lymfeknopen, maar dit komt ook vaak voor bij niet-maligne ziekten. Door grote verschillen in maturatiefase tussen maligne cellen, zijn ook de kenmerken, het verloop en de behandeling heel verschillend. Acute lymfatische leukemie (ALL) is een overgroei aan onvolwassen lymfatische cellen in het beenmerg en secundair in de circulatie. Als deze ophopen in lymfeweefsel krijg je maligne lymfomen. De aanwezigheid van immunoglobulines en de immunoglobuline isotype switch duidt op een B-cel leukemie of lymfoom. 80-90% van de maligne lymfatische ziekten zijn van B-cellen afkomstig. Het monoklonale karakter kun je zichtbaar maken door DNA analyse of immunofluorescentie, doordat dochtercellen dezelfde gen herschikkingen hebben.

    Acute lymfatische leukemie (ALL)

    Patiënten met ALL hebben vaak (net als patienten met AML) vaak trombocytopenie, granulocytopenie en anemie. ALL is de meest voorkomende maligniteit bij kinderen. Kenmerkende genetische veranderingen, zoals translocaties waar oncogenen en nucleaire transcriptiefactoren bij betrokken zijn, verstoren de proliferatie en differentiatie. Het Philedelphia-chromosoom, die we ook zagen bij CML, kom je veel bij volwassenen tegen. In het beenmerg en het bloeduitstrijkje vind je lymfoblasten en een verhoogd aantal leukocyten. Immunologische markers maken onderscheid tussen twee verschillende B-ALL’s: de zogenaamde “common-ALL”, wat immunoglobuline negatief is en de “volwassen pre-B-ALL”, met expressie van IgM. Dan is er ook nog T-ALL (10-15%), waarbij vroege T-cellen T-receptor genen blijven herschikken.

    De behandeling van ALL bestaat uit remissie inductie therapie, profylax om lokalisatie van leukemie in het CNS tegen te gaan, intensieve consolidatietherapie en onderhoudende therapie. Remissie inductie therapie leidt in vrijwel alle gevallen, bij kinderen meer dan volwassenen, tot complete remissie. Om terugkeer in CNS te voorkomen krijgen alle patiënten profylactisch intrathecale methotrexaat injecties met daarbij eventueel craniale bestraling. Dit gebeurt bij kinderen alleen als ze onder de hoogrisico groep vallen en ze niet geschikt zijn voor stamceltransplantatie. Consolidatietherapie bestaat uit een of meerdere intensieve chemokuren. De onderhoudende therapie voorkomt relapse na 2-3 maanden door orale toediening van cytostatica. Allo-SCT wordt alleen gedaan bij patiënten met een extreem aggressief verloop van de ziekte.

    Chronisch lymfatische leukemie (CLL)

    CLL is een volwassen B-cel neoplasma, waarbij er een toename is in kleine lymfocyten in het beenmerg, bloed en lymfeweefsels. Infiltratie in het beenmerg onderdrukt normale bloedcelproductie en leidt daarmee tot anemie, neutropenie en trombocytopenie. CLL is de meest voorkomende vorm van leukemie in de Westerse wereld. B-cel receptoren (BCR) van CLL patiënten binden een interne BCR-epitoop, die constante proliferatie van B-cellen induceert. Specifieke genetische veranderingen zijn belangrijk voor de prognose. Zo heeft een deletie van 11q en 17p een slechte prognose en deletie van 13q een relatief gunstige prognose. Inhibitie van apoptose en daarmee een trage ophoping van cellen is kenmerkender voor CLL dan de snelle proliferatie. Om de diagnose CLL te stellen, moeten minstens 5 x 10^9/L monoclonale B-lymfocyten in het bloed aanwezig zijn. CLL heeft een langzaam indolent beloop.

    De classificatie is gebaseerd op de tumor massa:

    • * stage 0: patiënt met alleen lymfocytose in het bloed en het beenmerg

    • * stage 1: ook vergrote klieren

    • * stage II: ook vergrote lever en/of milt

    • * stage III: lymfocytose met anemie

    • * stage IV: ook thrombocytopenie

    Gedurende de ziekte kan het aantal immunoglobuline progressief verlagen, waardoor 50% van de patiënten overlijdt aan een opportunistische infectie. De behandeling begint pas wanneer er sprake is van algemene klachten en stopt wanneer deze over zijn. De ziekte is namelijk niet te genezen of blijft indolent aanwezig. De behandeling bestaat uit chemotherapie, verschillend voor jongere/oudere patiënten. Het effect van de chemotherapie is daarnaast een goede indicator voor de prognose.

    Hodgkin lymfoom

    Kenmerkend hiervoor zijn gigantische R-S (Reed-Sternberg) cellen, die bijna altijd afkomstig zijn van B-cellen. Daarnaast vindt er overactivatie van CD30 plaats en zijn normale antilichamen van B-cellen afwezig (CD19, CD20). Diagnose is op basis van aanwezigheid van RS-cellen met daarbij veel reactieve cellen. Ook zien we vaak een ringvormige reactie van het bindweefsel, zogenaamde nodulaire sclerose. Immunohistologische testen (biopt) kunnen de diagnose bevestigen. Er bestaan twee typen Hodgkin lymfomen, namelijk ‘nodular lymfocyte predominant Hodgkin lymfoom’ (NLPHL) en ‘classical Hodgkin lymfoom’. Deze laatste komt in 95% van de gevallen voor en we gaan alleen hier verder op in. Een klinisch kenmerk van een Hodgkin lymfoom is dat deze vrijwel altijd in één of meer naastgelegen lymfeknopen, vrijwel nooit daarbuiten, begint en zich zo van lymfeknoop op lymfeknoop verspreidt. Het is een pijnloze zwelling, die vast aanvoelt, en meestal cervicaal, supraclaviculair of mediastinaal gelegen is. 20-40% heeft last van B-cel symptomen, zoals koorts, nachtzweten en een gewichtsverlies van meer dan 10%. Verder treedt het meestal op bij jongvolwassenen (15-35 jaar) of bij ouderen (50-60 jaar).

    De koorts kan van het Pel-Ebstein type zijn, waarbij de koorts gedurende perioden van twee weken steeds komt opzetten en weer afneemt. De behandeling is afhankelijk van het stadium. Tot stadium I en II behoren gelokaliseerde ziekten, afhankelijk of de patiënt wel of geen gunstige symptomen vertoont, krijgt hij 3-4 cycli standaard chemotherapie (AMVD) en daarna radiotherapie. Bij patiënten in stadium 3 en 4 is de ziekte gegeneraliseerd en krijgen ze 6-8 AMVD cycli met daarna radiotherapie waar grote lymfestations zaten en op plaatsen waar de PET-scan nog positief is.

    Non-Hodgkin lymfoom (NHL)

    Dit is een hele heterogene groep van proliferatieve lymfe aandoeningen en heeft dan ook veel verschillende types op basis van biologische kenmerken. Deze grote verschillen komen door de grote diversiteit in de ontwikkeling van normale B- en T-cellen. 60% van de patiënten komt met vergrote lymfeklieren als eerste klacht. Deze zijn meestal niet pijnlijk en voelen rubberachtig aan. Ze kunnen ook in de thorax of het abdomen voorkomen en veroorzaken pleuravocht of ascites als ze de drainage van lymfe verstoren. 40% van de patiënten komt met zwellingen buiten de lymfeknopen. De symptomen hangen dan ook af van de lokalisatie van het lymfoom. NHL verspreidt zich voornamelijk via het bloed, en dus niet net als HL via de lymfe. Methodes als PCR kunnen deze tumorcellen in het bloed identificeren. Deze hematogene spreiding kan toch zwellingen in de nek of lies teweegbrengen, zonder dat hier lymfeknopen bij betrokken zijn. Vaak wordt bij deze patiënten ook splenomegalie (vergrote milt) gezien. Een ander verschil tussen HL en NHL is dat meer dan 80% van de patiënten met NHL in stadium 3 of 4 zit, terwijl je bij HL voornamelijk lokale lymfomen ziet.

    JoHo: bundel begrijpen

      Hoe werkt een JoHo Bundel (pagina)

    • Bundels zijn verzamelingen (vaak links) van pagina's rond een specifieke vraag of onderwerp
    • Bundels werken als navigatietool

    Welke soorten bundels zijn er?

    Productbundels

    • Verzekeringsbundels: verzameling van content rond verzekeringsadvies of verzekeringsaanbod
    • Abonnementsbundels: verzameling van content rond advies of services voor JoHo abonnees en donateurs
    • Shopbundels: verzameling van artikelen die besteld kunnen worden

    Persoonlijke bundels

    • op vrijwel elke pagina kun je onder de 'Footprints' de 'Add to my pages' optie vinden. Daar kun je pagina's toevoegen aan je eigen verzamelingen en bundels. Deze bundels met jouw bewaarde pagina's kun je vervolgens onderaan vrijwel elke pagina terugvinden als je bent ingelogd als JoHo donateur of abonnee.

    Studiehulpbundels

    • Boekbundels: verzameling van chapters die tezamen de samenvatting van een boek vormen
    • Studiebundel: verzameling van content die hoort bij een specifiek vak of een studiefase

    Themabundel

    • Verzameling van content die behoort bij een topic en themapagina

    Toolbundel

    • Verzameling van content gericht op een specifiek proces of actie (bijvoorbeeld een vacature zoeken of een vak bestuderen)

    Toolbundel voor abonnees

    • Verzameling van content met toegang of services voor JoHo abonees
    Footprint: achterlaten
    Pagina bewaren in je bundels:

    (Service voor ingelogde JoHo donateurs)