  Chapter 

Pathologie: een introductie

Pathologie verklaart waarom signalen en symptomen zich voordoen. Dit vormt de basis voor zorg in de kliniek en therapieën. De vier aspecten van het ziekteproces vormen de kern van de pathologie. Hieronder vallen de oorzaak (etiologie), de mechanismen achter de ontwikkeling ervan (pathogenese), de biochemische en structurele veranderingen (moleculair en morfologisch) en de functionele consequenties (klinische manifestatie). De meeste ziekten worden door meerdere factoren veroorzaakt, waaronder zowel externe als genetische factoren.

  • Etiologie valt uiteen in twee factoren: genetisch (mutatie, ziekte-geassocieerde variaties in het gen, polymorfisme) en verworven (infectieus, voeding, chemisch, psychisch).

  • Pathogenese wijst op de opeenvolging van gebeurtenissen, die tot een respons leiden, van stimulus tot uiteindelijk het tot expressie komen van de ziekte. Dit speelt een belangrijke rol binnen de pathologie, omdat de uiteindelijke oorzaak alleen nog niet vertelt wat de functie van een gen is.

  • Morfologie wijst op een verandering in structuur van een cel of weefsel. Dit kan kenmerkend zijn voor een bepaalde ziekte of etiologisch proces.

  • Moleculaire analyse kan de genetische verschillen weergeven tussen bijvoorbeeld twee tumoren. Op deze manier is het ook het gedrag en daarmee de reactie ervan op verschillende therapieën te voorspellen.

  • Klinische manifestatie is het optreden van functionele abnormaliteiten, welke worden veroorzaakt door genetische, biochemische en structurele veranderingen.

De condities van een normale cel worden binnen een nauw bereik gehouden. Dit noemen we homeostase. Adaptatie is het reversibel aanpassen van een cel aan fysiologische stress of pathologische stimuli. Dit kan doordat een cel groter wordt (hypertrofie), functioneel actiever, vermeerdert in aantal (hyperplasie), kleiner en minder actief wordt (atrofie) of in differentiatie verandert (metaplasie). Er ontstaat celschade wanneer de cel zich niet verder kan adapteren of door blootstelling aan schadelijke stoffen of stress.

Als de stimulus blijft of in het begin al te sterk was, kan deze schade irreversibel worden en sterft de cel af. Adaptatie, reversibele celschade en celdood zijn stadia in het proces van een progressieve stoornis. Er zijn veel verschillende oorzaken, die kunnen leiden tot celdood. Dit kan op twee manieren gebeuren, namelijk door necrose en apoptose.

Voedseltekort stimuleert een adaptieve reactie genaamd autofagie. Stress induceert veranderingen in de cel anders dan de typische adaptaties. Veroudering van een cel zorgt ook voor veranderingen. Deze metabolische veranderingen of chronische veranderingen gaan vaak gepaard met intracellulaire ophoping van bepaalde stoffen.

Hypertrofie is het groter worden van cellen door verhoogde productie van cellulaire eiwitten, waardoor de grootte van het orgaan ook toeneemt. Dit gebeurt vooral bij (spier)cellen die niet kunnen delen. Hypertrofie kan fysiologisch of pathologisch zijn doordat het functioneel nodig is of door stimulatie van hormonen en groeifactoren. In spieren gebeurt dit vooral wanneer ze meer worden belast. Hierop reageert de spiercel door meer myofilamenten aan te maken. In de uterus stimuleren hormonen de groei van de uterus tijdens een zwangerschap.

Mechanische sensoren (stimulus: verhoogde last), groeifactoren en vasoactieve agonisten induceren samen de verhoogde synthese van eiwitten voor spieren. Hypertrofische cellen kunnen tevens de vorm van het samentrekkende eiwit veranderen in een foetale of neonatale vorm. De genen, die destijds tot expressie kwamen, worden dan niet meer down-gereguleerd. Als vergroting van de spier niet meer opweegt tegen de verhoogde last, ontstaat afbraak en verlies van vezels door apoptose of necrose. Onder selectieve hypertrofie valt ook selectieve hypertrofie van een suborganel in de cel. Het endoplasmatisch reticulum kan bijvoorbeeld gaan hypertrofiëren als adaptieve reactie op bepaalde medicijnen, waardoor er meer enzymen beschikbaar zijn om het af te breken. De adaptatie zorgt ervoor dat het lichaam de volgende keer minder op dit medicijn reageert.

Hyperplasie is een toename in het aantal cellen en daardoor een orgaan vergroten. Hypertrofie en hyperplasie komen vaak samen voor, doordat ze reageren op dezelfde externe stimulus. Wanneer de cel niet alleen in staat is om groter te worden, maar zich ook kan delen, zullen beide processen optreden. Er zijn twee soorten fysiologische hyperplasie. Hormonale hyperplasie (puberteit; proliferatie klierepitheel in de borsten) zorgt voor een betere functionele capaciteit van het weefsel, terwijl compenserende hyperplasie (in de lever) ervoor zorgt dat bepaald weefsel weer aangroeit na beschadiging of een medische uitsnijding. Een overmaat aan hormonen of groeifactor veroorzaakt de meeste vormen van pathologische hyperplasie. Er is hier dan sprake van een gecontroleerde verstoorde balans, die verdwijnt als de hoeveelheid hormonen/groeifactor vermindert. Kanker is het niet hetzelfde als hyperplasie: bij hyperplasie blijft de celdeling gecontroleerd, terwijl deze bij kanker ongecontroleerd is. De kans op het ontwikkelen van kanker is wel verhoogd in hyperplastisch weefsel. Virale infecties hebben ook als kenmerkende reactie het ontstaan van hyperplasie, doordat ze cellen beïnvloeden die groeifactor aanmaken. Hyperplasie ontstaat door een overmaat aan groeifactor of door een verhoogde output van stamcellen.

Atrofie is het verkleinen van een orgaan doordat het afneemt in hoeveelheid en grootte van cellen. Fysiologische atrofie vindt gedurende het hele leven plaats. Pathologische atrofie kan ontstaan door verschillende oorzaken:

  • Verminderde belasting door bijvoorbeeld bedrust. Eerst zal de grote van de cellen afnemen bij langere tijd zal ook het aantal cellen afnemen.

  • Verminderde innervatie

  • Verminderde bloedtoevoer. Ouderdomsatrofie ontstaat in de hersenen op late leeftijd door atherosclerose.

  • Tekort aan voedingsstoffen. Bij extreem voedseltekort worden spieren als brandstof opgebruikt. Patiënten met chronische ontstekingsziekten en kanker hebben een overschot aan TNF, wat de eetlust vermindert en vetten uitput, wat ook leidt tot spieratrofie.

  • Verminderde endocriene stimulatie. Verlies aan oestrogenen (stimulatie) leidt tot menopauze; atrofie vrouwelijke geslachtsorganen.

  • Druk. Compressie (een tumor) veroorzaakt in omliggende gebieden atrofie.

Cellulaire veranderingen zijn overal gelijk. Cellen worden kleiner van grootte en organellen, waardoor de cel minder nodig heeft om te overleven en dus alleen een verlies heeft van functie.

Atrofie ontstaat wanneer er te weinig eiwitten worden aangemaakt (verlaagde metabole activiteit) en teveel afgebroken (verhoogde activiteit van het ubiquitine-proteasoom pad). Voedseltekort of verminderde belasting stimuleert de koppeling van cellulaire eiwitten aan het kleine peptide ubiquitine, waarna het in de proteasoom wordt afgebroken. Autofagie, het proces waarbij een ‘verhongerde’ cel zichzelf opeet op zoek naar voedingsstoffen, gaat vaak samen met atrofie. Autofagische vacuolen bevatten componenten van de cel en kunnen fuseren met een lysosoom. Lysosomale enzymen kunnen deze componenten verteren of ze blijven over waarna ze als sarcofagen in het cytoplasma aan het celmembraan gekoppeld liggen. Bruine atrofie is de verkleuring van het weefsel door een grote hoeveelheid van deze restlichaampjes in sarcofagen.

Metaplasie

Metaplasie is een reversibele verandering van een gedifferentieerd celtype in een ander celtype. De meest voorkomende verandering is van cilindrisch epitheel naar plaveiselepitheel en ontstaat na chronische irritatie, zoals in de luchtpijp bij rokers, omdat dit epitheel beter kan overleven onder deze omstandigheden. Dit is dus een vorm van adaptatie, waarbij sommige functies verloren kunnen gaan. De factoren voor het ontstaan van metaplasie geven ook aanleiding tot het ontwikkelen van kwaadaardige transformaties in dit epitheel. Metaplasie ontstaat door het reprogrammeren van stamcellen in normaal weefsel of in niet-gedifferentieerde mesenchymale cellen in het bindweefsel. De voorlopercellen doorlopen dus differentiatie via een nieuwe pathway. Cytokinen, groeifactoren en componenten in de extracellulaire matrix stimuleren de expressie van bepaalde genen en bepalen zo waartoe een cel zich uiteindelijk zal ontwikkelen. Celschade is het gevolg van stress, blootstelling aan schadelijke stoffen of intrinsieke abnormaliteiten. Er is sprake van reversibele celschade, wanneer de schade verdwijnt als de stimulus wordt verwijderd. Dit zie je meestal in vroegere stadia of milde vormen van schade. Een van de kenmerken hiervan is een verminderde oxidatieve fosforylatie, waardoor er ook minder energie in de vorm van ATP kan worden opgeslagen. Daarnaast zwelt de cel op door veranderingen in ionconcentratie en de influx van water, wat ook tot verandering in de intracellulaire organellen kan leiden.

Celdood

Door langdurige schade verandert de cel irreversibel en sterft de cel af (celdood). Celdood wordt bewerkstelligd door necrose of apoptose. Bij necrose is het membraan ernstig beschadigd. Hierdoor komen lysozomale enzymen in de cel, waar ze de inhoud verteren, zodat deze naar buiten lekt. Dit is altijd pathologisch. Als het DNA of de cellulaire eiwitten onherstelbaar beschadigd zijn, dood de cel zichzelf met apoptose. Hierbij ontbindt de kern zich en valt de cel verder in fragmenten uiteen. Dit maakt het makkelijk om de stukjes te verwijderen. Apoptose is een normaal functioneel proces en heeft dus niet altijd iets te maken met celschade. Tot slot kan celdood ook het resultaat zijn van autofagie.

De meeste oorzaken voor celschade zijn in te delen in een aantal groepen:

  • Te weinig zuurstof (hypoxie). Afhankelijk van de ernst ondervindt een cel veranderingen, schade of sterf af. Dit kan ontstaan door een verminderde bloedstroom (ischemie), slechte zuurstofvoorziening of verminderde capaciteit van bloed om zuurstof mee te nemen.

  • Fysische factoren. Omgevingsfactoren die celschade kunnen veroorzaken, zijn extreme temperaturen (verbranden/bevriezen), plotselinge veranderingen in luchtdruk of straling.

  • Chemische factoren: wanneer stoffen in hypertonische concentraties voorkomen, de ionbalans verstoren of giftig zijn kan dit de cel ook beschadigen.

  • Infecties. Virussen tot bacteriën, schimmels en zelfs wormen veroorzaken ieder op een verschillende manier schade.

  • Immunologische reacties. Schadelijke reacties op lichaamseigen stoffen (auto-immuunziekte) en afweerreacties kunnen de cel of het weefsel ook beschadigen.

  • Genetische stoornissen. Genetische abnormaliteiten kunnen celschade veroorzaken doordat bepaalde functionele eiwitten niet goed werken. Daarnaast kan het de gevoeligheid voor chemicaliën of andere omgevingsfactoren beïnvloeden.

  • Verstoorde voedselbalans. Verstoorde voedselbalans is de voornaamste oorzaak voor celbeschading, met name in derdewereldlanden. Een overmaat aan voedingsstoffen leidt tot atherosclerose en obesitas, welke worden geassocieerd met verschillende ziekten.

Het duurt een even voordat een bepaalde oorzaak tot morfologische verandering leidt. Deze tijd hangt af van de sensitiviteit. Daarnaast duurt het langer voordat necrose optreedt dan andere reversibele veranderingen. De meest gebruikelijke stimuli leiden via necrose tot celdood. Apoptose heeft een meer unieke functie.

Belangrijke kenmerken van reversibele schade zijn opgezwollen cellen en organellen, blaasjes in het membraan, het loslaten van ribosomen van het endoplasmatisch reticulum (ER) en samenklonteren van chromatine in de kern. Het opzwellen is een resultaat van de verstoorde ion- en vloeistofbalans, doordat de ionpompen niet meer goed werken. Daarnaast ontstaan vaak vetvacuolen met vet in cellen die een rol spelen in het vetmetabolisme. Er zijn dus op 4 plaatsen in de cel structurele veranderingen aan: plasmamembraan (verlies microvilli/blaasjes), mitochondrium (gezwollen), ER (vergroot), kern (opsplitsing).

Necrose

Necrose is het gevolg van het verlies van ruimtelijke structuur van intracellulaire eiwitten (denaturatie) en enzymatische vertering van de dodelijk beschadigde cel. Necrotische cellen kunnen hun membraan niet goed meer in stand houden, waardoor delen vaak de cel uit lekken. De enzymen die de necrotische cel vervolgens verteren zijn afkomstig uit de lysosomen van de cel zelf en uit leukocyten. Vertering van componenten van de cel duurt uren, waardoor veranderingen in de cel niet altijd zichtbaar zijn. Sommige componenten kun je echter 2 uur later al wel in het bloed terugvinden. Wanneer de organellen in het cytoplasma zijn verteerd, ontstaan vacuolen in het cytoplasma. De dode cellen worden vervangen door een dubbele laag fosfolipen, zogenaamde myeline ‘figuren’, welke fagocytose ondergaan of verder afgebroken worden tot vetzuur. Deze vetzuren verkalken uiteindelijk.

Nucleaire veranderingen treden op 3 manieren op:

  1. Karyolyse duidt op het verliezen van DNA,
  2. Pyknose is het verschrompelen van de kern en de toename van basofielen en
  3. Bij karyorrhexis valt de irreversibel gecondenseerde (pyknotische) kern in fragmenten uiteen.

De verschillende morfologische patronen van necrose geven aanwijzingen over mogelijke oorzaken.

Bij coagulatienecrose blijft het dode weefsel dagen of weken onaangetast, doordat niet alleen de structurele eiwitten, maar ook enzymen voor proteolyse zijn aangedaan. Uiteindelijk zorgt fagocytose van de cellulaire restjes voor het opruimen van de cel. Coagulatienecrose ontstaat door ischemie ten gevolge van een obstructie, behalve in het brein. Het gebied waar coagulatieve necrose optreedt, noemen we een infarct.

Vervloeiende necrose zorgt juist voor een snelle vertering van dode resten, waarbij een vloeibare viscoos mengel (pus) ontstaat, doordat microben (bacteriën, schimmels) de ophoping van leukocyten stimuleren. Gangreen necrose is een combinatie van coagulatieve en liquefactieve necrose, waarbij ischemie voor schade zorgt en de patiënt een bacteriële infectie ter plaatse heeft. Hetgeen zich hierbij vormt noemen we koudvuur of gangreen. Verkazende necrose ontstaat meestal in het centrum van een tuberculose infectie. In het midden bevinden zich afgebroken cellen vormloze granulacellen met daaromheen een grens van inflammatoire cellen. Dit noemen we een granuloom.

Een pancreatitis kan vetnecrose veroorzaken, doordat lipasen uit de pancreas lekken en de membranen van vetcellen in het peritoneum en de tryglyceride-esters, die erbinnen lagen, afbreken. Deze vetzuren vormen met calcium grote witte gebieden (vet verzeping).

Fibrine-achtige necrose komt voor bij immunologische reacties met bloedvaten. Wanneer complexen van antigenen of antilichamen in de wand in aanraking komen met fibrine die uit de vaten lekt, vormt zich een heldere vormloze roze stof in de haematoxiline-eosine kleuring, genaamd fibrinoïd.

Necrotisch weefsel, dat het lichaam niet goed verteert en reabsorbeert, trekt calciumzouten en andere mineralen aan. Dit wordt dystrofische verkalking genoemd.

Er is een aantal elementen dat in de meeste vormen van celschade voorkomt:

  • De cellulaire reactie hangt af van het soort, de duur en de ernst van de schade.

  • De consequenties hangen af van het type, de staat en de mogelijkheid tot adapteren van de cel.

  • Verschillende biochemische mechanismen die aangrijpen op essentiële cellulaire componenten veroorzaken de celschade.

  • Iedere schadelijke stimulus triggert ook meerdere onderling verbonden mechanismen die andere cellen weer schade aan kunnen brengen.

ATP wordt voornamelijk geproduceerd via oxidatieve fosforylering van ADP. Een klein deel ontstaat uit anaerobe glycolyse. De meest voorkomende oorzaken voor uitputting van ATP zijn verminderde toevoer van zuurstof en voedingsstoffen, schade aan mitochondriën en het gedrag van giftige stoffen. Weefsels met de minste glycolytische capaciteit lijden het ergst onder zuurstoftekort (het brein).

Vermindering van de hoeveelheid ATP met 5-10 % heeft de volgende gevolgen:

  • Verminderde activiteit van de natrium-kaliumpomp, waardoor er meer natrium met water de cel in diffundeert, zodat deze opzwelt en het ER dilateert.

  • Veranderd cellulair energiemetabolisme. Ischemie leidt tot een zuurstoftekort, waardoor er minder oxidatieve fosfylering en meer glycolyse gaat plaatsvinden. De glycogeenvoorraad raakt op en er ontstaat meer lactaat, wat de cellulaire pH verlaagt.

  • Calciumpompen falen, wat tot meer Ca²+ influx leidt en beschadiging van cellulaire componenten.

  • Minder eiwitsynthese, doordat de ribosomen zich losmaken van het rER en polysomen splitsen ten gevolge van de langdurige uitputting van ATP.

  • Ontstaan van ongevouwen eiwitten, waardoor de unfolded protein reactie optreedt. Dit kan leiden tot celschade of celdood.

  • Necrose van mitochondriën en lysosomen, doordat de membranen irreversibel beschadigd zijn.

Mitochondriën leveren energie in de vorm van ATP en spelen een rol in celschade en celdood. Ze raken beschadigd door een toename aan Ca²+ in het cytosol, reactieve zuurstofverbindingen en zuurstoftekort. Twee gevolgen van schade aan mitochondriën zijn:

  • Ontstaan van een mitochondriële permeabiliteitstransitieporie. Door de porie gaat de membraanpotentiaal verloren en daarmee de oxidatieve fosforylatie, wat tot steeds verdere uitputting van ATP leidt en uiteindelijk tot necrose van de cel.

  • Apoptose van de cel, doordat tussen het binnenste en buitenste membraan cytochroom c en eiwitten liggen. Deze activeren de enzymen (caspases), die apoptose induceren. Wanneer deze weglekken in het cytosol, ondergaat de cel apoptose.

Toename van intracellulair Ca²+ brengt de cel schade toe via de volgende mechanismen:

  1. De mitochondriële permeabiliteitstransitieporie gaat open bij een ophoping van Ca²+ in de mitochondriën, wat ervoor zorgt dat er geen generatie van ATP plaatsvindt.

  2. Calcium activeert een aantal enzymen, waaronder fosfolipase, protease, endonuclease en ATPase, die voor respectievelijk membraan-, eiwit-, DNA- en ATP-schade zorgen.

  3. Het induceren van apoptose door caspases te activeren en de permeabiliteit van de mitochondriën te verhogen

Vrije radicalen zijn chemische stoffen die een ongepaard elektron bevatten en autokatalytische reacties in gang zetten wanneer ze met zichzelf reageren. Zo ontstaat een keten aan schade. Mitochondriën maken tijdens het opwekken van energie reactieve zuurstofradicalen (ROS), die beschermingsmechanismen weer afbreken en verwijderen. Tevens maken leukocyten, met name neutrofielen en macrofagen, ook ROS aan. Wanneer de concentratie van deze ROS stijgt, ontstaat oxidatieve stress. Dit is een proces dat voorkomt bij celschade, kanker, veroudering en degeneratieve ziekten. Vrije radicalen worden op verschillende manieren gegenereerd:

  • Tijdens de normale omzetting van zuurstof naar water worden tussenproducten geproduceerd, die ongepaarde elektronen bevatten, doordat er telkens een verschillend aantal elektronen van zuurstof wordt afgehaald.

  • Absorptie van stralingsenergie.

  • Ontsteking. Oxidases maken soms ook ROS.

  • Het enzymatische metabolisme van exogene chemicaliën of medicijnen kan ook vrije radicalen genereren. Dit zijn geen ROS, maar ze werken wel hetzelfde.

  • Overgangsmetalen (zoals koper en ijzer) kunnen elektronen afstaan of opnemen. Bij deze reactie katalyseren ze de vorming van vrije radicalen.

  • NO (stikstofoxide) kan zelf ook als een vrij radicaal functioneren

Deze vrije radicalen van stikstofoxide, zijn niet stabiel en reageren met water spontaan tot zuurstof en waterstofdioxide. Verder heeft het lichaam een aantal (niet-)/enzymatische mechanismen om ze te verwijderen:

  • Antioxidanten voorkomen vorming of maken ze inactief.

  • Reactieve ionen (ijzer en koper) zijn maar in lage concentraties in het bloed aanwezig, doordat ze aan transport- en opslageiwitten gekoppeld worden, wat de vorming van ROS vermindert.

  • Een aantal enzymen verwijderen radicalen door superoxide (zuurstof met een vrij elektron) en waterstofdioxide af te breken. Hiertoe behoren:

  • Catalase (in peroxisoom): 2 waterstofdioxide wordt zuurstof + 2 water

  • Superoxide-dismutasen (SODs) in de mitochondriën en het cytosol: 2superoxide + 2H wordt 2waterstofdioxide + zuurstof

  • Glutathion peroxidase katalyseert de afbraak van vrije radicalen ook. Daarbij zegt de ratio GSH (voorproduct)/GSSG iets over de capaciteit van de cel om ROS onschadelijk te maken.

Vrije radicalen kunnen tot onder andere 3 relevante pathologische reacties leiden:

  1. Peroxidatie van membraanvetten. Dit gebeurt wanneer vrije radicalen afkomstig van zuurstof in aanraking komen met onverzadigde vetzuren. Deze peroxiden zijn onstabiel en leiden zo tot een keten aan reacties, propagatie genaamd.

  2. Oxidatieve verandering van eiwitten. Vrije radicalen stimuleren de oxidatie van zijketens van aminozuren, waardoor de conformatie verandert, actieve bindingsplaatsen verloren gaan en de afbraak van misvormde eiwitten in de proteasomen verhoogd wordt.

  3. Schade aan het DNA.

Het membraan, en daarmee de permeabiliteit, raakt op verschillende manieren beschadigd:

  1. ROS

  2. Verminderde synthese van fosfolipiden: gevolg van een defect aan het mitochondrium of door hypoxemie, wat beiden leidt tot een verminderde productie van ATP.

  3. Versterkte afbraak van fosfolipiden: celschade leidt tot een verhoogde calciumconcentratie, wat leidt tot het vrijkomen van fosfolipasen.

  4. Abnormaliteiten in het cytoskelet: De verhoogde Ca²+ concentratie activeert ook proteasen, die het cytoskelet aantasten, waardoor het celmembraan van het cytoskelet loslaat.

Mitochondriële membraanschade leidt tot verminderde ATP-productie en afgifte van eiwitten die apoptose op gang brengen. Schade aan het plasmamembraan verstoort de osmotische balans en leidt tot het verlies van cellulaire inhoud. Bij schade aan de lysosomale membranen lekken enzymen naar buiten, die complete vertering katalyseren, waardoor de cel door necrose afsterft. Oxidatieve stress en vrije radicalen veroorzaken dermate ernstige schade aan DNA en eiwitten, dat deze irreversibel is, ondanks de aanwezige herstelmechanismen.

Ischemie veroorzaakt sneller en ernstigere schade dan hypoxemie, omdat hierbij niet alleen de aerobe, maar ook de anaerobe glycolyse verstoord is. Dit laatste komt door uitputting van de glycogeenvoorraad en de verminderde afvoer van metabolieten. Als een staat van ischemie aanhoudt, ondervindt de cel irreversibele schade en necrose.

Het herstellen van de perfusie in ischemisch weefsel kan tot extra schade leiden, doordat nieuwe schadelijke processen gaan werken. Reoxigenatie verhoogt namelijk de vorming van reactieve zuur- en stikstoffen. Daarnaast veroorzaakt de verhoogde productie van cytokines en expressie van hechtingsmoleculen ontstekingen en hebben IgM antilichamen de neiging om in ischemisch weefsel te gaan zitten. Hier binden ze aan eiwitten en zorgt de activatie voor nog meer schade en ontstekingen.

Chemicaliën veroorzaken schade via twee mechanismen:

  • Direct, door te binden aan belangrijke moleculaire componenten; Alleen de cellen die deze stoffen gebruiken, absorberen of uitscheiden lijden hieronder

  • Indirect, doordat ze pas in het ER van de lever omgezet worden in reactieve giftige metabolieten; Deze schade ontstaat voornamelijk door de formatie van vrije radicalen.

Apoptose

Apoptose is een gereguleerd zelfmoordmechanisme, wat ervoor zorgt dat de cel in stukjes wordt afgebroken en afsterft, voordat er iets uit kan lekken. Hierdoor ontstaan geen ontstekingsreactie. Dit proces is erop gericht cellen om onnodige cellen te verwijderen. Het is belangrijk bij de volgende fysiologische processen: vernietiging van cellen tijdens embryogenese, herstellen van hormoon-afhankelijk weefsel, verlies van cellen bij prolifererend weefsel om het aantal gelijk te houden, eliminatie van schadelijke zelf-reactieve lymfocyten en doden van gastcellen die hun werk gedaan hebben (neutrofielen/lymfocyten). Apoptose doodt alleen cellen die irreversibel (pathologisch) beschadigd zijn. Dit gebeurt bij DNA-schade, ophoping van niet goed gevormde eiwitten, celdood door bepaalde infecties en pathologische atrofie van weefsel na een obstructie.

Zichtbare kenmerken van apoptose zijn: het krimpen van de cel, condensatie van chromatine, blaasjes in het cytoplasma die apoptotische lichaampjes vormen, en fagocytose door macrofagen. Er zijn een aantal biochemische veranderingen die hiervoor zorgen. Zo wijst de aanwezigheid van actieve caspases op apoptose in een cel. Tevens vindt de afbraak van eiwitten en DNA op een specifieke manier plaats, wat niet het geval is bij necrose. Specifieke membraanveranderingen zorgen ervoor dat fagocyten de dode cellen kunnen herkennen.

Te veel of te weinig apoptose kan de oorzaak zijn van bijvoorbeeld degeneratieve ziekten en kanker. Apoptose heeft twee fases: de initiatiefase en de uitvoerende fase. De initiatiefase komt op gang door signalen van twee verschillende pathways:

  • De intrinsieke (mitochondriële) pathway is het belangrijkste mechanisme en bevat Bcl-sensoren, -effectoren en -regulatoren, die het lekken van apoptose stimulerende moleculen (cytochroom c) veroorzaken. Deze binden vervolgens met initiatie-cascasen, die uitvoerende caspasen activeren.

  • De extrinsieke pathway treedt in werking wanneer een ‘dood’-receptor op het plasmamembraan een verbinding met een cel aangaat. De receptoren vallen onder de TNF-familie en bevatten een ‘dood-domein’. Na binding van het ligand aan de receptor, gaan meerdere receptoren bij elkaar liggen waardoor de domeinen een verbinding met elkaar aangaan om een hechtingsplaats te vormen voor adaptoreiwitten. Het adaptoreiwit bindt uiteindelijk aan caspasen die de apoptose uitvoeren.

Wanneer een initiatie-caspase zicht splitst en zijn actieve vorm krijgt, zet hij de uitvoerende caspasen in werking, die op hun beurt weer DNAses activeren. Dit is de uitvoerende fase. De apoptotische cel splitst zich in kleine delen en ondergaat membraanveranderingen waardoor fagocytose gestimuleerd wordt. Macrofagen produceren zelf deeltjes die aan apoptotische cellen binden. Het proces duurt slechts enkele minuten en laat geen sporen achter, dus geen inflammatie.

Als er teveel of te weinig apoptose plaatsvindt, kunnen er ziekten ontstaan. Te weinig apoptose zorgt ervoor dat abnormale cellen, zoals cellen met DNA-mutaties, overleven. Dit kan kanker veroorzaken. Daarnaast overleven ook cellen die lichaamseigen cellen aanvallen. In dat geval is er sprake van een auto-immuunziekte. Een teveel aan apoptose leidt tot een verlies aan cellen, wat neurodegeneratieve ziekten en ischemische schade veroorzaakt.

Autofagie is een proces dat optreedt ten tijde van voedselschaarste, waarbij een stervende cel zichzelf opeet om te overleven. Hierbij worden intracellulaire organellen en het cytosol in kleine stukjes verdeeld en vervolgens van het cytoplasma gescheiden in een autofagische vacuole, die later met een lysosoom tot een autofagolysosoom fuseert. Lysosomale enzymen kunnen dan de cellulaire componenten verwerken.

Abnormale intracellulaire ophopingen van een bepaalde stof kunnen ook schade toebrengen aan een cel. Deze kunnen endogeen of exogeen en tijdelijk of permanent zijn. Het cytoplasma en de celkern kunnen bestandsdeeltjes opslaan. De meeste abnormale vormen van ophoping zijn onder te verdelen in 4 types:

  • De productie van een normaal endogeen bestandsdeel is gelijk of verhoogd, maar het kan niet snel genoeg verwijderd worden door een vertraagd metabolisme.

  • Een gemuteerd gen zorgt voor de vorming van een abnormale endogene stof, die zich niet goed kan vouwen en de cel niet kan afvoeren

  • Een enzymdefect, meestal erfelijk, zorgt ervoor dat een normaal bestandsdeel niet goed afgebroken kan worden

  • Een abnormale exogene stof treedt binnen, die door de cel niet afgebroken of getransporteerd kan worden

Steatose (vetverandering) duidt op een abnormale ophoping van triglyceriden en komt vaak voor in de lever en in het hart. Belangrijke oorzaken zijn alcoholmisbruik, diabetes mellitus en obesitas. De lever breekt normaal vrije vetzuren af tot cholesterolesters, fosfolipiden of ketonlichaampjes. Bij een defect ontstaan uit een teveel aan vetzuren triglyceriden. Apo-eiwitten kunnen deze weer omzetten in lipide-eiwitten, die buiten de lever opslagen kunnen worden als vet.

Cellen gebruiken cholesterol voor de synthese van het celmembraan. Alleen pathologische processen zorgen ervoor dat de cel cholesterol of cholesterolesters intracellulair opslaat. Dit gebeurt bij atherosclerose (vetvacuolen in de intimalaag van bloedvaten), xanthomen (in bindweefsel in huid/pezen), cholesterolose (lamina propia van de galblaas) en de ziekte van Niemann-Pick type C (mutatie, meerdere organen). Een overmaat aan opslag van eiwitten in de cel kan een gevolg zijn van:

  1. Teveel reabsorptie in de renale buis; dit is een compensatoir mechanisme van het lichaam, wanneer er sprake is van teveel eiwitten in de urine.

  2. Een normaal eiwit moet in grote hoeveelheden geproduceerd worden. Voorbeeld: plasmacellen produceren grote hoeveelheden antilichamen. De uitgezetten ER zijn te zien als lichaampjes van Russel.

  3. Een defect in het intracellulaire transport en daarmee de secretie van belangrijke eiwitten.

  4. Ophoping van eiwitten van het cytoskelet; dit ontstaat als gevolg van schade aan de cel of bepaalde ziekten, zoals de ziekte van Alzheimer.

  5. Aggregatie van abnormale eiwitten.

Hyaline is de naam voor een histologisch fenomeen, waarbij een homogene, eosinofiele (roze) substantie te zien is in weefsel. Komt binnen en buiten de cel voor. Een overmaat aan glycogeen komt voor bij patiënten met een defect in hun glucose of glycogeen metabolisme, wat resulteert in een intracellulaire overmaat, zichtbaar als heldere vacuoles in het cytoplasma.

Pigmenten kunnen exogeen of endogeen zijn. Voorbeelden van exogene pigmenten zijn koolstof en tatoeages. Wanneer je koolstof inademt, nemen macrofagen dit op via je longweefsel en brengen het via lymfatische kanalen naar de lymfeknopen. Deze worden zwart als je teveel koolstof inademt. Daarnaast bestaat een aantal endogene pigmenten. Lipofuscine is een bruine pigmentkorrel, die de aanwezigheid van regressieve veranderingen in weefsel markeert. Melanine is bruinzwart van kleur. Het goudgeel-kleurige hemosiderine, afkomstig van hemoglobuline, geeft een overmaat in opgeslagen ijzer aan. Wanneer het ijzer van het heem wordt afgehaald, ontstaat biliverdine (groen).

Er zijn twee vormen van pathologische verkalking:

  1. Bij dystrofische verkalking vindt de afzetting van calcium plaats in necrotische gebieden. Schade aan het membraan zou ervoor zorgen dat calcium in membraan gebonden vesikels wordt geconcentreerd. Allereerst bindt calcium aan fosfolipiden en binden osfatasen die een fosfaatgroep vormen aan het calcium. Dit herhaalt zich een aantal keer, waarna het geheel structureel verandert tot een microkristal, die zorgt voor nog meer afzetting van calcium. Metastatische verkalking is het afzetten van calcium in normaal weefsel, wanneer er sprake is van een hypercalciëmie. Dit is het gevolg van (1) een toegenomen secretie van het parathyroïd hormoon (PTH), (2) vernietiging van weefsel in het beenmerg, (3) vitamine D gerelateerde aandoeningen of (4) nierfalen. Het kan overal in het lichaam optreden, maar dit komt het meest voor in tussenliggend weefsel van de maag, nieren, longen en bloedvaten, waar excretie van zuur plaatsvindt. Cellulaire veroudering is een progressieve vermindering in functie en leefbaarheid door genetische abnormaliteiten en ophopingen van cellulaire en moleculaire schade.

Veranderingen, die een bijdrage leveren in de veroudering van cellen, zijn:

  • Verminderde cellulaire replicatie; cellen bereiken een staat, waarna ze zich niet meer kunnen delen (veroudering). Dit komt mogelijk doordat het DNA na iedere deling iets korter wordt. Cellen van kinderen delen vaker dan cellen van volwassenen.

  • Ophoping van metabolische en genetische veranderingen; Oxidatieve schade, veroorzaakt door vrije radicalen, neemt toe met de leeftijd van de cel.

  • Tot slot kunnen ook de organellen verouderen wat de cel vermindert in functie.

Signaaltransductiewegen

De mechanismen, die de vernieuwingsprocessen van de cel controleren kunnen fout gaan, waardoor de structuur van weefsel wordt aangetast. Kanker ontstaat door afwijkingen in het normale cel gedrag. Door een genetische verandering kan de cel ongecontroleerd delen en in leven blijven, terwijl dit eigenlijk niet moet. Ondertussen ontstaan er veel dochtercellen met dezelfde genetische verandering. Er ontstaat een uitbreidend gezwel van delende cellen, die het weefsel verstoort.

Kankercellen hebben twee karakteristiekeerfelijke eigenschappen:

  1. Zij en hun nakomelingen delen zich ongecontroleerd;

  2. Ze migreren naar andere weefsels en vormen daar nieuwe tumoren.

Het is de combinatie van deze eigenschappen die uiteindelijk letaal kan zijn. Als een cel alleen de eerste eigenschap heeft, ontstaat een gezwel door ongeremde deling. Dit gezwel blijft echter op een bepaalde plek. in het weefsel Het wordt daarom een goedaardige tumor genoemd, ofwel benigne. Goedaardige tumoren kunnen vaak met een chirurgische ingreep worden verwijderd.

Een tumor veroorzaakt alleen kanker als zowel eigenschap 1 als 2 aanwezig is. Dan kunnen dekankercellen zich uit zaaien naar andere weefsels. Cellen van kwaadaardige (maligne) tumoren breken los van de primaire tumor en verplaatsten zich via bloed- of lymfevaten naar andere delen van het lichaam. Hier vormen zij secundaire tumoren, ofwel metastasen. Hoe verder de kanker is uitgezaaid, hoe moeilijker het te behandelen is.

Er zijn veel factoren van invloed op het ontstaan van kanker. Veel van de factoren die kanker kunnen veroorzaken, komen uit de omgeving. De belangrijkste invloedfactor is het roken van tabak, wat niet alleen longkanker veroorzaakt maar ook de kans verhoogt op vele andere soorten kanker.

Kanker is hoofdzakelijk een genetische ziekte: het ontstaat als gevolg van pathologische veranderingen in de informatie, die gedragen wordt door het DNA. Het verschil met andere genetische ziektes is dat mutaties die kanker tot gevolg hebben vaak somatische mutaties zijn. Dat wil zeggen dat het mutaties zijn die ontstaan in individuele cellen van het volwassen lichaam. Kanker wordt meestal veroorzaakt door mutagenen: stoffen of straling die mutaties veroorzaken. Er isMaar ook zonder mutagenen kan kanker ontstaan, omdat mutaties ook spontaan voorkomen door fouten tijdens DNA replicatie en repair. Er ismeer dan een enkele mutatie nodig om een normale cel in een kankercel te veranderen. Verschillende mutaties stapelen zich vaak geleidelijk op.Daarom komt kanker voornamelijk voor bij oudere mensen.

Menselijke kankercellen

Veel menselijke kankercellen zijn genetisch instabiel, doordat bepaalde mutaties ertoe leiden dat DNA replicatie en repair niet goed verloopt. Er kunnen bijvoorbeeld fouten optreden in de replicatie-, repair-, controle- en checkpointprocessen van de celcyclus. Hierdoor ontstaan er sneller, steeds meer mutaties.

De mutaties die leiden tot kanker geven cellen een competitief voordeel boven andere cellen. Hierdoor kunnen cellen zich goed delen en verspreiden binnen een weefsel. Dit voordeel wordt veroorzaakt door verschillende eigenschappen van kankercellen:

  1. Verminderde afhankelijkheid van signalen van andere cellen voor groei, overleving en deling. Vaak komt dit door mutaties in delen van de signaleringswegen. Een mutatie in het Ras gen zorgt bijvoorbeeld voor een permanent signaal voor celdeling, die normaal van buitenaf zou moeten komen.

  2. Verminderde gevoeligheid voor apoptose. Door mutaties in genen die het intracellulaire dodingprogramma reguleren. Hierdoor kunnen de beschadigde cellen niet geprogrammeerd worden gedood. Het p53 gen is een deel van het checkpoint mechanisme dat het DNA op beschadigingen controleert. Normaal gesproken zorgt het ervoor dat een cel stopt met delen of dood gaat wanneer het DNA beschadigd blijkt. Wanneer p53 defect is, blijft de cel met beschadigd DNA delen en overleven.

  3. Ongecontroleerde en eindeloze celdeling. De meeste cellen kunnen slechts een bepaald aantal keer delen voordat ze onwerkzaam worden, doordat telomeren te kort worden. Het enzym telomerase kan door mutaties de productie van telomeren stimuleren, waardoor de celdeling geen limiet heeft.

  4. Genetische instabiliteit.

  5. Abnormaal invasief, vaak door een gebrek aan moleculen die de cellen aan elkaar binden.

  6. Deling en overleving in andere lichaamsweefsels. Normaal overleven cellen niet in vreemde weefsels, maar door mutaties kunnen ze zich daar ontwikkelen tot metastasen.

Bepaalde mutaties maken een bepaald eiwit hyperactief. Deze mutaties hebben een dominant effect: één gen moet gemuteerd zijn om problemen te veroorzaken. Het gemuteerde gen wordt dan oncogeen genoemd. De correspondeerde normale gen wordt proto-oncogeen genoemd. Mutaties kunnen proto-oncogenen veranderen in oncogenen.

Andere mutaties vernietigen de functie van het gen (een bepaald product kan niet worden gevormd. Hiervoor moeten wel beide allelen van het gen geïnactiveerd/aangetast zijn om effecten waar te nemen. Deze genen worden tumor suppressor genen genoemd..

Oncogenen en suppressor genen kunnen in vele verschillende soorten voorkomen afhankelijk van het gen dat aangetast is. Deze mutaties kunnen betrekking hebben op groeifactoren, receptoren, intracellulaire signaleringsstoffen, DNA-repair eiwitten, DNA schade controleurs (p53), regulatoren van de celcyclus of apoptose.

Hoe beter we kanker begrijpen, hoe beter we het kunnen behandelen. De behandeling van kanker is echter erg moeilijk, omdat kankercellen veranderlijk zijn door mutaties. Hierdoor kunnen zij snel resistentie ontwikkelen tegen bepaalde behandelingen. Daarnaast is elke soort kanker anders, omdat de mutaties random plaatsvinden. Dus één behandeling zal nooit alle kankergevallen kunnen behandelen. Als laatste wordt een kankergezwel vaak pas ontdekt wanneer het al een diameter van 1 cm heeft en zich al heeft uitgezaaid.

Tot nu toe is het wegsnijden van het gezwel de meest effectieve behandeling. De kanker moet dan niet uitgezaaid zijn. Een andere manier om tumorcellen te doden is radio- of chemotherapie. Hierdoor wordt DNA van vooral tumorcellen beschadigd. Met mogelijke nieuwe behandelingen hopen we meer effectieve behandeling voor kanker te verkrijgen.

Voor toegang tot deze pagina kan je inloggen

 

Aansluiten en inloggen

Sluit je aan en word JoHo donateur (vanaf 5 euro per jaar)

 

    Aansluiten en online toegang tot alle webpagina's 

Sluit je aan word JoHo abonnee

 

Als donateur een JoHo abonnement toevoegen

Upgraden met JoHo abonnement (+ 10 euro per jaar)

 

Inloggen

Inloggen als donateur of abonnee

 

Hoe werkt het

Om online toegang te krijgen kun je JoHo donateur worden  en een abonnement afsluiten

Vervolgens ontvang je de link naar je online account en heb je online toegang

Lees hieronder meer over JoHo donateur en abonnee worden

Ben je al JoHo donateur? maar heb je geen toegang? Check hier  

Korte advieswijzer voor de mogelijkheden om je aan te sluiten bij JoHo

JoHo donateur

  • €5,- voor wie JoHo WorldSupporter en Smokey Tours wil steunen - voor wie korting op zijn JoHo abonnement wil - voor wie van de basiskortingen in de JoHo support centers gebruik wil maken of wie op zoek is naar de organisatie achter een vacature - voor wie toegang wil tot de op JoHo WorldSupporter gedeelde samenvattingen en studiehulp

JoHo abonnees

  • €20,- Voor wie online volledig gebruik wil maken van alle JoHo's en boeksamenvattingen voor alle fases van een studie, met toegang tot alle online HBO & WO boeksamenvattingen en andere studiehulp - Voor wie gebruik wil maken van de vacatureservice en bijbehorende keuzehulp & advieswijzers - Voor wie gebruik wil maken van keuzehulp en advies bij werk in het buitenland, lange reizen, vrijwilligerswerk, stages en studie in het buitenland - Voor wie gebruik wil maken van de emigratie- en expatservice

JoHo donateur met doorlopende reisverzekering

  • Sluit je via JoHo een jaarlijks doorlopende verzekering af dan kan je gedurende de looptijd van je verzekering gebruik maken van de voordelen van het JoHo abonnement: hoge kortingen + volledig online toegang + alle extra services. Lees meer

Abonnementen-advieswijzers voor JoHo services:

Abonnementen-advieswijzers voor JoHo services

  • Check hier de advieswijzers voor samenvattingen en stages - vacatures en sollicitaties - reizen en backpacken - vrijwilligerswerk en duurzaamheid - emigratie en lang verblijf in het buitenland - samenwerken met JoHo

Steun JoHo en steun jezelf

 

Sluit je ook aan bij JoHo!

 

 Steun JoHo door donateur te worden

en steun jezelf door ook een abonnement af te sluiten

 

Lees of zoek verder »
Crossroads

 Crossroads

  • Crossroads lead you through the JoHo web of knowledge, inspiration & association
  • Use the crossroads to follow a connected direction

 

Footprint toevoegen
 
   
Hoe werkt een JoHo Chapter?

 JoHo chapters

Dit chapter is gebundeld in:
Eigen aantekeningen maken?

Zichtbaar voor jezelf en bewaren zolang jij wil

Flexibele parttime bijbanen bij JoHo

    Memberservice: Make personal notes

    Ben je JoHo abonnee dan kun je je eigen notities maken, die vervolgens in het notitieveld  worden getoond. Deze notities zijn en blijven alleen zichtbaar voor jouzelf. Je kunt dus aantekeningen maken of bijvoorbeeld je eigen antwoorden geven op vragen