Voor de meest recente samenvattingen en studiehulp zoek je hier op titel of auteur en kan je gebruik maken van het menu
JoHo: menu studiehulp & samenvattingen

 

Samenvatting Molecular Biology of the Cell

Voorbeeld Hoofdstuk (Je toegangsniveau is niet voldoende voor het gebruiken van de volledige samenvatting)
Voorbeeld Hoofdstuk (Je toegangsniveau is niet voldoende voor het gebruiken van de volledige samenvatting): 

1. Cellen en genomen

 

De algemene kenmerken van de cellen op aarde

 

Leven wordt onder andere gedefinieerd met het begrip erfelijkheid: de ouder geeft informatie door aan de nakomelingen. Het merendeel van de levende organismen zijn eenvoudige, enkele cellen, maar er zijn ook multicellulaire cellen. Deze cellen hebben speciale functies en communiceren ook met elkaar. Toch begint alles bij een enkele cel. De basis van erfelijkheid is de chemische code in het DNA en wordt aangegeven door vier basen (A, T, C en G). Deze informatie wordt gelezen, gekopieerd en vertaald door de cel in een organisme. Deze letters kunnen ook gelezen worden door wetenschappers, zodat de erfelijke informatie duidelijk wordt. De basen zitten aan een suikergroep en de suikergroep zit aan een fosfaatgroep (nucleotide). DNA is dubbelstrengs, dus complementaire basen zitten vast aan elkaar en tegenover elkaar. De naast elkaar gelegen fosfaatgroepen vormen een polymeer ketting. DNA wordt gekopieerd, DNA replicatie, door het opbreken van de twee strengen, waarna de complementaire base kan hechten aan de template (templated polymerization).

 

DNA moet niet alleen gekopieerd worden, maar ook geuit worden. Deze rol wordt uitgevoerd door twee andere monomeren: ‘ribonucleic acid’ (RNA) en eiwitten. Het RNA is een gekopieerd stuk DNA dat vervolgens vertaald wordt in eiwitten. RNA verschilt van DNA in twee opzichten: 1) RNA bevat een ribose suikergroep in plaats van een deoxyribose suikergroep en 2) RNA bevat een U in plaats van een T. Daarnaast zijn er verschillende soorten RNA. Een vorm van RNA is messenger RNA dat de informatie van de cel uit de celkern transporteert naar het gebied waar het geuit kan worden. De verschillende soorten RNA hebben ook verschillende vormen door hun flexibele fosfaat- en suikergroepen. Hierdoor kunnen ze ook bindingen met zichzelf maken (GGGG met CCCC).

 

Aminozuren zijn de monomeren van eiwitten en daar zijn er twintig van. De gevormde polypeptides vouwen zichzelf in een driedimensionale positie met een actieve bindingsplaats. De eiwitten, samen met specifieke moleculen, kunnen reacties katalyseren; dit zijn enzymen. Hierdoor kunnen chemische reacties in de cel sneller plaatsvinden.

Het vertalen van aminozuren gaat met behulp van codons (drie basen achter elkaar; triplet). Er zijn meerdere codons die voor dezelfde eiwitten coderen. De code wordt gelezen door transfer RNA op specifieke bindingsplaatsen. Er zijn twee bindingsplaatsen: 1) tRNA bindt aan een specifiek aminozuur en 2) de andere kant bindt aan het antidocon. De codon wordt gelezen door ribosomale RNA (rRNA), waarna een ketting van aminozuren ontstaat.

 

Een gen codeert voor een eiwit. RNA moleculen kunnen deze genen op verschillende manieren lezen, maar soms niet helemaal, waardoor er alternatieve versies van eiwitten ontstaan. Genen coderen ook voor RNA. De expressie van individuele genen wordt gereguleerd door de hoeveelheid dat nodig is op dat moment. De regulerende segmenten zitten tussen de eiwit segmenten. Het genoom codeert niet alleen voor DNA, maar reguleert dit ook.

 

Leven heeft energie uit de omgeving nodig om voort te leven. Deze energie wordt uit de omgeving gehaald om de juiste bindingen en kopieën te maken. Alle cellen functioneren hetzelfde met dezelfde basis (RNA, DNA, eiwitten, of kleine eiwitten zoals simpele suikers, nucleotiden en aminozuren). Daarnaast is de belangrijkste stof adenosine triphosphate (ATP). Ook zijn alle cellen omringd door een membraan. Hier kunnen voedingsstoffen doorheen en afval door afgevoerd worden. Dit membraan is amfilisch: een deel is hydrofoob (waterafstotend) en het andere deel is hydrofylisch (waterliefhebbend). De hydrofobische kant heeft een hydrocarbon staart (CH2-CH2-CH2). Daarnaast kan het membraan zich vouwen op een manier dat de cel nodig heeft. Ook zijn er membraan transport eiwitten die afval weggooien. Deze zijn zelfs bijna hetzelfde in hele verschillende organismen. Dit houdt in dat deze eiwitten al zeer oud zijn. De katalytische eiwitten in de cel bepalen de chemie en wat er gebeurt met de binnenkomende moleculen.

 

Een levende cel kan bestaan met minder dan 500 genen. Een voorbeeld hiervan is het Mycoplasma genitalium en bevat 480 genen. Het leeft als een parasiet, maar moet nog wel zijn eigen DNA, RNA en eiwitten maken voor de basisproducten van erfelijkheid.

 

De diversiteit van genomen en de boom des levens

 

Cellen krijgen energie uit verschillende bronnen met vrije energie. Organotrofe organismen ontvangen energie uit chemische omzettingen van organische stoffen (bijvoorbeeld: mensen en bacteriën). Andere organismen die hun energie uit de niet-levende wereld halen, vallen in twee klassen: 1) fototroof (bacteriën en algen) en 2) lithotroof (microscopische organismen in rotsen, diepzee en aardkost). De eerste haalt zijn energie uit zonlicht en de tweede klasse haalt zijn energie uit rotsen. Organotrofen overleven niet zonder deze twee klassen. Sommige lithotrofen krijgen energie van aerobische reacties met zuurstof uit de omgeving. Er zijn ook anaeroben in zuurstofarme omgevingen. Deze leven waarschijnlijk al lang, al voordat er zuurstof was. Een andere vorm van vrije energie zijn de hydrothermale openingen in de diepzee. Deze bevatten vele chemicaliën en warmte waar organismen van leven.

DNA, RNA en eiwitten bestaan uit water, koolstof, stikstof, zuurstof, sulfaat en fosfor. In de atmosfeer zit N2 en CO2, maar dit is onbruikbaar voor organismen. Andere organismen zetten dit om zodat ze dit wel kunnen gebruiken. Planten zetten bijvoorbeeld CO2 om in O2, maar hebben bacteriën nodig voor stikstof.

 

Organismen kunnen ingedeeld worden in twee klassen: 1) eukaryoten en 2) prokaryoten. De eukaryoten houden hun DNA in een apart membraan: de celkern. Eukaryoten zijn planten, schimmels en dieren. Prokaryoten zijn bacteriën en archaea. Bacteriën bevatten een sterke celwand. Daarin zit alles wat de bacterie nodig heeft om te leven. Daarnaast zijn prokaryoten heel divers, kunnen bijna overal op leven en verwerken energie met of zonder bijproducten.

De classificatie van organismen kan op basis van uiterlijk, maar wanneer organismen veel op elkaar lijken, wordt dit lastiger. Daarom gebruiken wetenschappers tegenwoordig het genoom om evolutionaire relaties te ontdekken. De boom des levens, met alle organismen op de wereld, bestaat uit drie domeinen: 1) bacteriën, 2) archaea en 3) eukaryoten. Archaea leven op plekken waar mensen niet komen zoals de diepzee of zure, hete bronnen. Onder de microscoop zijn ze moeilijk te onderscheiden van bacteriën, maar lijken qua DNA meer eukaryoten op het gebied van replicatie, transcriptie en translatie.

 

Random fouten kunnen de nucleotide sequentie veranderen (mutaties). De klasse één veranderingen zullen behouden blijven, omdat het organisme zich voortplant. De klasse twee veranderingen, selectieve neutrale veranderingen, blijven in het organisme op basis van kans. Door mutatie en natuurlijke selectie veranderen organismen dus. Er zijn verschillen in de snelheid qua veranderingen. Een gen dat voor niks codeert, kan sneller en vrijer veranderen. Een gen dat codeert voor een belangrijk eiwit, moet juist blijven (zeer behouden). Als men genomen vergelijkt, wordt er naar zeer behouden genen gekeken.

 

Bacteriën kunnen snel evolueren, omdat ze snel delen, weinig ruimte innemen en weinig DNA hebben (1000-6000 genen). De genen worden vergeleken met voorouderlijke en levende organismen om een plekje te vinden in de boom des levens. DNA is nooit nieuw, want het komt van eerdere organismen. Innovatie kan op vier manieren ontstaan:

1.      Intragene mutatie verandert het bestaande gen. Dit gebeurt vaak tijdens de replicatie.

2.      Genduplicatie vindt plaats wanneer een gen verdubbelt wordt. Deze twee dezelfde genen kunnen op aparte wijzen evolueren.

3.      DNA segment schuiven: een stukje gen komt ergens anders terecht door het opbreken en weer aan het elkaar binden van genen.

4.      Horizontale (intercellulaire) transfer: een gen verplaatst zich naar een ander genoom of cel. De verticale transfer is van ouders naar nakomelingen.

 

Door genduplicaties kunnen ‘families’ ontstaan van genen die zeer veel op elkaar lijken in een enkele cel. Dit moet gescheiden blijven van vergelijkingen tussen organismen, omdat anders soortenvergelijkingen niet goed verlopen. Genen die gerelateerd zijn door afkomst, heten homologen. Dit kan gezien worden als een gemeenschappelijke voorouderlijke vorm. Hierin zijn twee klassen te onderscheiden: 1) ortholoog en 2) paraloog. Genen die hetzelfde zijn in twee verschillende soorten, gelijk aan het gen van de gemeenschappelijke voorouder, wordt ortholoog genoemd. Paraloge genen zijn duplicatiegenen die apart zijn geëvolueerd qua functie. Deze stammen dus af van een enkel gen binnen dezelfde soort, terwijl orthologie voorkomt tussen verschillende soorten.

 

Virussen, of bacteriofagen, laten verticale transfer zien. Deze virussen gebruiken vectoren voor gentransportatie. Dit zijn kleine pakketjes met genetisch materiaal naar een gastheercel, waarna daar het replicatiecentrum wordt gebruikt voor de voortplanting van dat virus. De gastheercel kan dood gaan, maar ook voortleven met een stukje virus (plasmide). Op deze manier wordt het penicilline resistente gen doorgegeven. Prokaryoten kunnen ook DNA opnemen uit hun omgeving, waardoor nieuwe soorten kunnen ontstaan.

 

Horizontale veranderingen in de genetische informatie van een bacterie/archaea zijn heel belangrijke geweest voor hun evolutie, omdat ze geen seks hebben. Seks brengt namelijk een grote diversiteit in dieren tot stand en is een horizontale transfer. De nakomelingen van ouders lijken het meest op de ouders dan op andere individuen uit die soort.

 

De functie van een gen kan vaak bepaald worden door zijn sequentie. Deze kan vervolgens vergeleken worden met andere genen om de verwantschap te bepalen. Daarnaast kan de functie bepaald worden door sequenties te vergelijken met al reeds bekende sequenties en functies. Als de verwantschap bepaald is, kan het organisme een plekje krijgen in de boom des levens. Hierbij zijn er een aantal problemen. Ten eerste kunnen organismen voorouderlijk DNA verloren hebben, ten tweede kunnen organismen DNA op een verticale manier verkregen hebben en ten derde zijn de genen al zeer oud en sowieso in de 2-3 miljoen jaar veranderd. Op dit moment wordt de boom des levens ingedeeld met ultrabehouden genen. Toch is er nog veel meer duidelijkheid nodig over de genomen van organismen.

 

Mutaties kunnen de functies van genen onthullen. Dit is het doel van genetica: het vindt of maakt een mutatie en kijkt vervolgens hoe dit resulteert in het uiterlijk of gedrag van dat organisme. Biochemie kijkt naar de moleculen en chemische activiteit van een organisme. Als deze twee studies worden samengevoegd, kan er een hoop duidelijk worden over de functie van dat stukje gen. Daarvoor is er kennis nodig van het hele genoom en het organisme. Hiervoor worden modelorganismen gebruikt die makkelijk in gebruik zijn voor onderzoek. Een voorbeeld hiervan is de Escherichia coli. Dit is een bacterie en kan snel gekweekt worden. Uit de E. coli is duidelijk geworden hoe sommige fundamentele mechanismen, zoals replicatie, werken. Deze zijn zo oud dat ze ongeveer hetzelfde zijn als bij de mens. Met model organismen kunnen we ook onszelf dus gaan begrijpen.

 

Genetische informatie in eukaryoten

 

Eukaryoten zijn groter en complexer dan prokaryoten. Het DNA zweeft niet los rond zoals bij prokaryoten, maar zit in een aparte celkern met een dubbel membraan. Ze zijn tien keer zo groot en hebben een cytoskelet voor mechanische kracht, vorm en beweging. Doordat het membraan zachter (protozoa) is dan prokaryoten, kunnen ze andere cellen opnemen (fagocytose). Ze kunnen begonnen zijn als jagers, ze leefden dan op andere cellen. Het jagers-idee is ook een verklaring voor de mitochondria (energiefabrieken). Deze hebben eigen DNA, hebben eigen ribosomen, eigen tRNA en lijken op bacteriën. Ze zijn opgenomen zodat de cel energie kreeg en zij een plekje om te leven. Chloroplasten in planten lijken op mitochondria en laten fotosynthese plaatsvinden voor de energie. Fungi hebben ook mitochondria, maar geen protozoa en dus een harde celwand. Hierdoor kunnen ze niet bewegen en moeten ze leven op resten van andere organismen.

DNA van de mitochondria en chloroplasten bestaat uit DNA voor de energie, maar bevatten ook genen voor andere onderdelen. Deze zijn niet verloren gaan, maar in het genoom van de gastheercel terecht gekomen. Hierdoor is het genoom van de eukaryoten hybride. Daarnaast bevat het DNA van een mens met eukaryote cellen heel veel niet-coderend DNA. Men denkt dat er veel DNA is, omdat jagers groot moeten zijn, door parasiete mobiele elementen die alles opeisen of omdat het DNA zo vaak verdubbeld is. Het niet-coderende DNA bevat genen dat naastgelegen genen reguleert.

 

Alle cellen in een organisme hebben hetzelfde DNA, maar toch wordt de ene cel een zenuwcel en de andere een botcel. Dit wordt geregeld door de sequentie instructies uit de omgeving. Dit zijn vaak gen regulerende eiwitten die direct of indirect genen aansporen of stoppen.

Sommige eukaryoten leven solitair, zoals de protisten. Dit zijn zeer diverse klassen van organismen. Tekeningen van voorbeelden zijn te zien op pagina 33, figuur 1-41.

Gist (Saccharomyces cerevisiae) is een makkelijk, minimaal en eencellig model eukaryoot voor de wetenschap. Het heeft een harde celwand, is relatief immobiel en bevat mitochondria. Gist kan zichzelf delen als voortplanting, maar ook zichzelf seksueel voortplanten. Hierbij voegen twee gistcellen zich samen, worden diploïde en ondergaan meiose. De eukaryotische cel divisie is duidelijk geworden door dit organisme. Het mRNA wordt gebruikt om de expressie van alle genen van een organisme tegelijk te zien. Hier wordt een mRNA stuk vergeleken met een gemuteerd mRNA stuk dat een bepaald gen mist. Het vergelijken en verdere verwerkingen van DNA wordt gedaan met behulp van de computer, wiskunde en kwantitatieve informatie (de juiste waarden gebruiken, voor de juiste voorspellingen).

 

Planten zijn niet lang geleden pas gaan evolueren. Hierdoor zijn deze groepen organismen nog zeer gelijk aan elkaar. De Arabidopsis thaliana is het modelorganisme dat voor de plantengroep veel is gebruikt, produceert duizend nakomelingen in acht à tien weken en is elf keer groter dan gist. Dieren hebben geholpen om multicellulaire organismen te gebruiken. Deze dieren zijn de worm Caenorhabditis elegans, de vlieg Drosophila melanogaster, de muis Mus musculus en de mens Homo sapiens. De C. elegans kan bevroren worden en in die staat gehouden worden, heeft 97 miljoen nucleotiden en heeft geholpen bij het begrijpen van celdeling en celdood. De Drosophila heeft laten zien hoe mutaties in genen resulteren in fenotypen. Het is eigenlijk een insect, maar handig in gebruik omdat het vliegje zo klein is, snel voortplant en veel nakomelingen heeft. Daarnaast is het vliegje ook handig, omdat het ‘maar’ 170 miljoen nucleotiden heeft. Het gewervelde dier zit vol met paralogen, clusterduplicaties en volgens een hypothese is zelfs het hele genoom een keer verdubbeld (vier genen). Bij gewervelden is de herkomst moeilijk te traceren, want er zijn vele duplicaties en deze zijn allemaal een andere weg op gegaan. Een voorbeeld hiervan is de X. ruwenzoriensis: deze heeft 108 chromosomen door duplicatie in tegenstelling tot zijn haploïde soortgenoot met 36 chromosomen.

 

Er zijn genen die verwisselbaar zijn qua functies. Dit wordt genetische overtolligheid genoemd en is voor wetenschappers heel vervelend. Het houdt de identificatie van genen tegen. Ook al nemen genen soms nieuwe rollen op zich, er zal altijd iets van het origineel blijven zitten. Bij de Drosophila vindt er relatief weinig duplicatie plaats. Op dit moment is de muis een van de best gebruikte dieren in genetisch onderzoek. Het genoom van de mens is ook in kaart gebracht, waardoor het opsporen van mutaties sneller gaat, maar het blijft een heel groot genoom met drie biljoen nucleotiden. Er wordt gekeken naar ziektes, hoe die ontstaan en hoe dit verholpen kan worden. Gewassen worden zo gemanipuleerd dat ze meer en beter produceren en bacteriën worden voor ons eigen gebruik gekweekt en gemanipuleerd.

 

 

Voor toegang tot deze pagina kan je inloggen

 

Inloggen (als je al bij JoHo bent aangesloten met een abonnement)

   Aansluiten   (voor online toegang tot alle webpagina's)

 

Hoe het werkt

 

Lees hieronder meer over aansluiten bij JoHo

    JoHo abonnement (€20,- p/j)

    • Voor wie online volledig gebruik wil maken van alle JoHo's en boeksamenvattingen voor alle fases van een studie, met toegang tot alle online HBO & WO boeksamenvattingen en andere studiehulp
    • Voor wie gebruik wil maken van de gesponsorde boeksamenvattingen (en er met zijn pinpoints 10 gratis kan afhalen in een JoHo support center of bij een JoHo partner)
    • Voor wie gebruik wil maken van de vacatureservice en bijbehorende keuzehulp & advieswijzers
    • Voor wie gebruik wil maken van keuzehulp en advies bij werk in het buitenland, lange reizen, vrijwilligerswerk, stages en studie in het buitenland
    • Voor wie extra kortingen wil op (reis)artikelen en services (online + in de JoHo support centers)
    • Voor wie extra kortingen wil op de geprinte studiehulp (zoals tentamen tests en study notes) in de JoHo support centers

    JoHo abonnement met service-pakket (€20,- + €60,-)

    • Voor wie de boeksamenvattingen voor zijn of haar studie of studiegebied gratis thuisgestuurd wil krijgen
    • Voor wie gebruik wil maken van de basisservices voor zijn of haar vrijwilligersorganisatie of instelling die de JoHo doeleinden steunt
    • Voor wie gebruik wil maken van de emigratie- en expatservices

    JoHo donateur (WorldSupporter) worden

    JoHo donateurschap (€5,- per jaar)

    • Voor wie €10,- korting wil op zijn JoHo abonnement
    • Voor wie JoHo WorldSupporter en Smokey projecten wil steunen
    • Voor wie gebruik wil maken van alle gedeelde materialen op WorldSupporter
    • Voor wie op zoek is naar de organisatie bij een vacature

     

    Sluit je een abonnement af in de periode juli tot en met december, dan maak je in de eerste maanden gratis gebruik maken van je de voordelen & services bij je abonnement. Je abonnementsbijdrage geldt dan ook voor het volgende kalenderjaar.

     

    Aanmelden bij JoHo

     

    Study note: begrijpen

     

     

     

    Study note: te gebruiken bij
    Crossroad: relaties

    Uitgebreide samenvatting van het boek. Let op: Deze samenvatting bevat hoofdstukken 1 t/m 7 en 15.

    JoHo: benodigd toegangsniveau
    • Donateur met JoHo abonnement