Boeksamenvatting bij SPSS Survival Manual - Pallant - 5e druk


Wanneer en hoe wordt een correlatie analyse toegepast? - Chapter 11 (5)

Correlatie analyse wordt toegepast om de sterkte en richting van een lineaire relatie tussen twee variabelen aan te duiden. In dit hoofdstuk worden twee correlatiecoëfficiënten genoemd: (1) Pearson r voor continue variabelen (op interval niveau) en in gevallen waarbij er sprake is van één continue en één dichotome variabele, en (2) Spearman rho voor variabelen op ordinaal niveau en in gevallen dat je data niet voldoet aan de criteria voor de Pearson correlatie. Dit hoofdstuk laat zien hoe je een bivariate Pearson r en een niet-parametrische Spearman rho uitrekent.

11.1 Welke voorbereidende analyses moeten gedaan worden?

Voordat je een correlatieanalyse uitvoert, is het handig om eerst een scatterplot te genereren; aan de hand hiervan kan je kijken of aan de assumptie van lineariteit en homoscedasticiteit is voldaan. Daarnaast geeft een scatterplot je een helderder beeld van de aard van de relatie tussen je variabelen.

Procedure voor het genereren van een scatterplot:

  1. Klik in het menu bovenaan het scherm op Graphs en klik vervolgens op Legacy Dialogs.

  2. Klik op Scatter/Plot en kies Simple Scatter. Klik nu op Define.

  3. Klik op de eerste variabele (meestal de afhankelijke variabele) en verplaats deze naar de box van de y-as.

  4. Klik op de tweede variabele (meestal de onafhankelijke variabele) en verplaats deze naar de box van de x-as.

  5. In de Label Cases by box kun je je ID variabele zetten, zodat outliers kunnen worden geïdentificeerd.

  6. Klik op OK (of op Paste om de syntax editor te bewaren).

Interpretatie van de scatterplot-output

De scatterplot kan worden gebruikt om te controleren voor een aantal aspecten van de verdeling van twee variabelen:

  1. Controleren voor outliers, ofwel extreme data-waarden die afwijken van het cluster van data-waarden. Probeer te achterhalen waarom dit outliers zijn (is de data wel goed ingevoerd?). Wanneer je een outlier hebt geïdentificeerd en het ID-getal wil achterhalen, kan je gebruik maken van het Data Label Mode-icoon in de Chart Editor. Dubbelklik op de grafiek op de Chart Editor te activeren. Klik vervolgens op het icoon dat lijkt op de roos van een dartbord (of klik op Data Label Mode in het Elements-menu) en klik op punt in de grafiek dat je wilt identificeren, er verschijnt dan een getal; dit is het ID-getal.

  2. Inspectie van de verdeling van data-scores.

  3. Vaststellen van de richting van het verband (positief of negatief) tussen de variabelen.

Wanneer je de verdeling van scores in het scatterplot hebt onderzocht en hebt vastgesteld dat er sprake is van een ruwweg lineaire relatie, kan je de Pearson r of Spearman rho correlatiecoëfficiënt gaan berekenen. Volg, voordat je met de volgende procedure begint, eerst deze stappen: (1) klik in het menu op Edit, selecteer Options en vervolgens op General. Zorg dat in het Output-gedeelte de box No scientific notation for small numbers in tables is aangevinkt.

Procedure voor het berekenen van Pearson r of Spearman rho:

  1. Klik in het menu bovenaan het scherm op Analyze en selecteer vervolgens Correlate. Klik dan op Bivariate.

  2. Selecteer je twee variabelen en verplaats deze naar de Variabelen box.

  3. In het Correlation Coefficient-gedeelte is de Pearson-box de standaardoptie. Als je Spearman rho wilt uitrekenen, vink dan de Spearman-box aan.

  4. Klik op Opties. Klik voor missende waarden de Exclude Cases Pairwise aan. Onder Opties kan je ook gemiddelden en standaardafwijkingen aanvinken.

  5. Klik op Continue en vervolgens op OK (of op Paste om de syntax editor te bewaren).

11.2 Hoe werkt de interpretatie van de correlatie-output?

De resultaten van Pearson r vind je onder correlation in de output en die van Spearman rho onder nonparametric correlations. De output van beide tests interpreteer je op dezelfde manier.

  • Stap 1: Controleer de steekproefinformatie (N); klopt dit getal? Als er veel data ontbreekt, zoek dan uit hoe dit komt. Ben je bijvoorbeeld vergeten de Exclude cases pairwise box aan te vinken?

  • Stap 2: Stel de richting van het verband vast; is er sprake van een positieve of negatieve correlatie?

  • Stap 3: Stel de sterkte van het verband vast; dit kan je aflezen aan de waarde van de correlatiecoëfficiënt. Een correlatie van 0 betekent dat er geen correlatie is. Een waarde van -1 betekent een perfecte negatieve correlatie en een waarde van +1 wijst op een perfecte positieve correlatie. Om de waarden te interpreteren kun je het best gebruik maken van de richtlijnen van Cohen:

    • Klein: r = .10 tot .29 (of -.10 tot -.29)

    • Gemiddeld: r = .30 tot .49 (of -.30 tot -.49)

    • Groot: r = .50 tot 1.0 (of -.50 tot -1.0)

  • Stap 4: Bereken de determinatiecoëfficiënt. Dit geeft je een idee van de gedeelde variantie van je twee variabelen. De determinatiecoëfficiënt bereken je door de r-waarde te kwadrateren. Wil je deze omzetten naar het percentage gedeelde variantie, hoef je de determinatiecoëfficiënt alleen maar te vermenigvuldigen met 100.

  • Stap 5: Achterhaal het significantieniveau (Sig. 2 tailed). Het statistisch significantieniveau geeft een indicatie van de mate waarin we kunnen vertrouwen op de verkregen resultaten.

11.3 Hoe worden de correlatie-resultaten weergegeven?

Wanneer je de correlatie tussen twee variabelen vermeldt, kan dit in een lopende tekst. Echter, correlatie wordt vaak gebruikt om de relatie tussen groepen variabelen te onderzoeken (in plaats van slechts twee variabelen). In dit geval is het onhandig om dit in een lopende tekst te rapporteren vanwege de vele correlatiecoëfficiënten; je kunt in dit geval de resultaten het beste in een tabel zetten.

11.4 Hoe bereken je de correlatiecoëfficiënten tussen groepen variabelen?

Als je de relaties tussen meerdere variabelen wilt achterhalen, kan je alle variabelen in de Variables box plaatsen. Dit kan echter resulteren in een enorme correlatiematrix die lastig te lezen en interpreteren is. Als je slechts naar een aantal correlaties op zoek bent, kan je gebruik maken van de Syntax Editor.

Procedure voor verkrijgen van correlatiecoëfficiënten tussen twee groepen variabelen

  1. Klik in het menu bovenaan het scherm op Analyze en selecteer vervolgens Correlate. Klik dan op Bivariate.

  2. Verplaats de variabelen waarin je geïnteresseerd bent naar de Variables box. Selecteer de eerste groep variabelen, gevolgd door de tweede groep variabelen. In de output zal de eerste groep variabelen als rijen in de tabel gepresenteerd worden, en de tweede groep variabelen als kolommen. Plaats dus eerst de variabelen met langere namen, zodat de tabel niet te breed wordt.

  3. Klik op Paste; hiermee open je de Syntax Editor.

  4. Plaats je cursor tussen de eerste en tweede groep variabelen. Type hier het woord with.

  5. Om deze nieuwe syntax te activeren, moet je de tekst vanaf CORRELATIONS tot en met het eind selecteren.

  6. Klik vervolgens op de groene pijl/driehoek (>) of ga naar het menu en klik op Run en vervolgens op Selection.

11.5 Op welke manier kunnen de correlatiecoëfficiënten van twee groepen vergeleken worden?

Je kan ook de sterkte van de correlatie tussen twee afzonderlijke groepen achterhalen.

Procedure voor het vergelijken van correlatiecoëfficiënten van twee groepen

Stap 1: splits de steekproef.
  1. Klik in het menu bovenaan het scherm op Data en vervolgens op Split File.

  2. Klik op Compare Groups.

  3. Plaats de groepeer variabele naar de box Groups based on. Klik op OK (of Paste om de Syntax Editor op te slaan).

Stap 2: Correlatie.
  1. Volg de stappen in het eerdere gedeelte van dit hoofdstuk voor het verkrijgen van de correlatie tussen de variabelen waarin je geïnteresseerd bent. De resultaten worden afzonderlijk van elkaar weergeven per groep.

Belangrijk: vergeet niet de Split File optie uit te zetten als je klaar bent. Dit doe je door in het Data Editor venster te klikken op Data, Split File en vervolgens op Analyze all cases, do not create groups.

11.6 Hoe werkt het testen van de statistische significantie van het verschil tussen correlatiecoëfficiënten?

In dit gedeelte wordt de procedure beschreven die je kan volgen om te achterhalen of de correlaties tussen twee groepen significant verschillen. Eerst zullen r-waarden worden omgezet naar z-scores. Vervolgens wordt een vergelijking gebruikt om de geobserveerde waarde van z (zobs waarde) te berekenen. De verkregen waarde zal worden berekend met behulp van een vaste besluitregel om vast te stellen wat de kans is dat het verschil in de correlatie tussen de twee groepen te wijten is aan toeval.

Eerst dient gecontroleerd te worden voor een aantal assumpties. Er wordt vanuit gegaan dat de r-waarden van de twee groepen zijn verkregen uit willekeurige steekproeven en dat de twee groepen onafhankelijk zijn (dus dat dezelfde participanten niet twee keer zijn getest). De scoreverdeling voor de twee groepen moet normaal zijn. Ook moet iedere groep bestaan uit minstens 20 casussen.

  • Stap 1: Zet iedere r-waarde om naar een z-score.

  • Stap 2: Zet deze waarden om naar de vergelijking om zobs te berekenen. Dit doe je aan de hand van de volgende formule: zobs = z1 – z2 / √ 1/N1-2 + 1/N2-3

  • Stap 3: Stel vast of de zobs-waarde statistisch significant is. Als besluitregel geldt: als -1,96 obs obs kleiner is dan of gelijk is aan -1.96 of groter of gelijk aan 1.96, dan zijn de coëfficiënten significant verschillend.

Wat is het verschil tussen correlatie en partiële correlatie? - Chapter 12 (5)

De partiële correlatie lijkt op Pearson r uit het vorige hoofdstuk, met als verschil dat je bij de partiële correlatie kan controleren voor een aanvullende (confound) variabele.

Wat is de procedure voor de partiële correlatie?

  1. Klik in het menu bovenaan het scherm op Analyze, selecteer vervolgens Correlate en daarna Partial.

  2. Klik op de twee continue variabelen die je wilt correleren. Klik op de pijl om deze variabelen naar de Variables box te verplaatsen.

  3. Klik op de variabele waarvoor je wilt controleren en verplaats deze naar de Controlling for box.

  4. Klik op Options.

    • Klik in het Missing Values gedeelte op Exclude cases pairwise.

    • Klik in het Statistics gedeelte op Zero order correlations.

  5. Klik op Continue en daarna op OK (of op Paste om de Syntax Editor op te slaan).

Interpretatie van de partiële correlatie-output

In de output staat een tabel die bestaat uit twee gedeelten. In de bovenste helft vind je de normale Pearson product-moment correlatiematrix waarbij niet wordt gecontroleerd voor de mogelijke confound variabele. In de tweede helft van de tabel worden dezelfde correlatieanalyses herhaald, maar nu wordt wel gecontroleerd voor de mogelijke confound variabele. Door de twee correlatiecoëfficiënten met elkaar te vergelijken kun je achterhalen of het rekening houden met de aanvullende variabele invloed heeft gehad op de relatie tussen je twee variabelen.

Wat komt er allemaal kijken bij meervoudige regressie? - Chapter 13 (5)

In dit hoofdstuk wordt uitgelegd hoe je SPSS kunt gebruiken bij meervoudige regressieanalyses. Meervoudige regressie is niet slechts één techniek, maar een verzameling technieken die gebruikt kan worden om de relatie tussen een continue afhankelijke variabele en meerdere onafhankelijke variabelen of voorspellers (meestal continu) te onderzoeken. Het is gebaseerd op correlatie, maar biedt een meer verfijnde analyse van de relatie tussen een reeks variabelen. Meervoudige regressie kan bij verschillende onderzoeksvragen worden toegepast, waaronder:

  • Hoe goed een reeks variabelen in staat is een bepaalde uitkomst te voorspellen.

  • Welke variabele binnen een reeks variabelen de beste voorspeller van een bepaalde uitkomst is.

  • Of een bepaalde voorspellende variabele nog steeds de uitkomst kan voorspellen wanneer gecontroleerd wordt voor de invloed van een andere variabele.

13.1 Wat zijn de belangrijkste soorten meervoudige regressie?

Er zijn verschillende soorten meervoudige regressieanalyses die je, afhankelijk van je onderzoeksvraag, kan toepassen. De drie belangrijkste meervoudige regressieanalyses zijn:

  1. Standaard of simultaan

  2. Hiërarchisch of sequentieel

  3. Stapsgewijs

Standaard meervoudige regressie

In de standaard meervoudige regressie worden alle onafhankelijke (of voorspellende) variabelen tegelijkertijd vergeleken. Iedere variabele wordt geëvalueerd in termen van zijn voorspellende waarde vergeleken met die van de andere onafhankelijke variabelen. Deze analyse gebruik je als je een reeks variabelen hebt en wil weten in welke mate ze als groep de variantie in een afhankelijke variabele kunnen verklaren.

Hiërarchische meervoudige regressie

In de hiërarchische meervoudige regressie (ook wel sequentiële regressie genoemd) worden de onafhankelijke variabelen aan de vergelijking toegevoegd in de volgorde die door de onderzoeker is vastgesteld op basis van een theoretisch kader. Variabelen of reeksen variabelen worden in stappen toegevoegd. Iedere variabele wordt gemeten in termen van wat het toevoegt aan de voorspelling van de afhankelijke variabele nadat is gecontroleerd voor de overige variabelen.

Stapsgewijze meervoudige regressie

In de stapsgewijze regressie levert de onderzoeker een lijst van onafhankelijke variabelen en laat vervolgens het programma, op basis van een reeks statistische criteria, selecteren welke variabelen worden toegevoegd en in welke volgorde deze worden toegevoegd aan de vergelijking. Er zijn drie verschillende versies van deze benadering: (1) voorwaartse selectie, (2) achterwaartse schrapping (backward deletion), en (3) stapsgewijze regressie.

13.2 Welke assumpties horen bij meervoudige regressie?

Steekproefgrootte

Het is belangrijk dat je steekproef niet te klein is, omdat de resultaten anders niet (voldoende) generaliseerbaar zijn. Tabachnick en Fidell kwamen met een formule om de benodigde steekproefgrootte uit te rekenen: N > 50 + 8m (m = aantal onafhankelijke variabelen). Je hebt meer casussen nodig als de variabele scheef (skewed) is. Voor stapsgewijze regressie heb je een ratio van 40 casussen per onafhankelijke variabele nodig.

Multicollineariteit en singulariteit

Dit verwijst naar de relatie tussen de onafhankelijke variabelen. Van multicollineariteit is sprake wanneer de onafhankelijke variabelen sterk met elkaar correleren (r = .9 en hoger). Van singulariteit is sprake wanneer een onafhankelijke variabele eigenlijk een combinatie is van andere onafhankelijke variabelen. Geen van beide draagt bij aan een goed regressiemodel.

Outliers

Meervoudige regressie is erg gevoelig voor outliers (extreem hoge of lage scores). Controleer dus alle variabelen (zowel de afhankelijke, als de onafhankelijke) op outliers. Outliers kunnen worden verwijderd uit de dataset, of ze kunnen een score krijgen die hoog/laag is, maar niet teveel afwijkt van de overige scores. Tabachnick en Fidell definiëren outliers als scores met gestandaardiseerde residuele waarden > 3.3 of

Normaliteit, lineariteit, homoscedasticiteit en onafhankelijkheid van residuen

Al deze termen verwijzen naar verschillende aspecten van de verdeling van scores en de aard van de onderliggende relatie tussen de variabelen. Deze assumpties kunnen worden afgelezen in de residuen scatterplots. Residuen zijn de verschillen tussen de verkregen en voorspelde afhankelijke variabele (AV) scores. Aan de hand van de residuen scatterplots kan je de volgende assumpties controleren:

  • normaliteit: de residuen moeten normaal verdeeld zijn over de voorspelde AV-scores.

  • lineariteit: de residuen moeten een lineaire relatie hebben met de voorspelde AV-scores.

  • homoscedasticiteit: de variantie van de residuen over de voorspelde AV-scores zou voor alle voorspelde scores hetzelfde moeten zijn.

13.3 Hoe ziet de standaard meervoudige regressie er uit?

In het geval van de standaard meervoudige regressie worden alle onafhankelijke variabelen tegelijkertijd in het model ingevoerd. De resultaten geven een indicatie hoe goed deze reeks variabelen in staat is om de afhankelijke variabele te voorspellen. Ook laat het zien hoeveel unieke variantie elk van de onafhankelijke variabelen kan verklaren ten opzichte van de overige onafhankelijke variabelen.

Procedure voor standaard meervoudige regressie

Klik voordat je met de volgende procedure begint op Edit in het menu. Selecteer vervolgens Options en zorg dat de box No scientific notification for small numbers in tables is aangevinkt.

  1. Klik in het menu bovenaan het scherm op Analyze, selecteer vervolgens Regression en daarna Linear.

  2. Klik op je continue afhankelijke variabele en verplaats deze naar de Dependent box.

  3. Klik op je onafhankelijke variabelen en klik op de pijl om ze te verplaatsen naar de Independent box.

  4. Zorg dat voor de Methode Enter is geselecteerd.

  5. Klik op de Statistics knop. Selecteer het volgende: Estimates, Confidence Intervals, Model fit, Descriptives, Part and partial correlations en Collinearity diagnostics. Selecteer in het Residuals gedeelte Casewise diagnostics en Outliers outside 3 standard deviations. Klik vervolgens op Continue.

  6. Klik op Options en selecteer in het Missing Values gedeelte Exclude cases pairwise. Klik op Continue.

  7. Klik op de Plots knop. Klik op *ZRESID en de pijl om deze te verplaatsen naar de Y-box. Klik op *ZPRED en de pijl om deze te verplaatsen naar de X-box. Vink in het Standardized Residual Plots de optie Normal probability plot aan en klik op Continue.

  8. Klik op Save. Vink in het Distances gedeelte Mahalanobis box en Cook’s aan. Klik op Continue en vervolgens op OK (of op Paste om de Syntax Editor op te slaan).

13.4 Hoe interpreteer je de standaard meervoudige regressie output?

Stap 1: Controleer de assumpties

Multicollineariteit

De correlaties tussen de variabelen in je model staan in de tabel Correlations. Controleer of je onafhankelijke variabelen ten minste enige relatie met je afhankelijke variabele vertonen (het liefst > .3). Controleer ook of de correlatie tussen je onafhankelijke variabelen niet te groot is (het liefst een bivariate correlatie

SPSS voert als onderdeel van de meervoudige regressieprocedure ook ‘collineariteitsdiagnostiek’ uit op je variabelen. Dit kan problemen met betrekking tot multicollineariteit ondervangen die niet in de correlatiematrix zichtbaar zijn. Deze resultaten staan in de tabel Coefficients. Hier worden twee waarden gegeven: Tolerance en VIF. Tolerance is een indicator van hoeveel van de variabiliteit van de gespecificeerde onafhankelijke variabele niet verklaard wordt door de overige onafhankelijke variabelen in het model. Als deze waarde erg laag is (

Outliers, normaliteit, lineariteit, homoscedasticiteit en onafhankelijkheid van residuen

Een manier waarop deze assumpties kunnen worden gecheckt is door de Normal Probability Plot (P-P) of the Regression Standardised Residual en de Scatterplot te inspecteren. Deze staan aan het eind van de output. In de Normal P-P Plot hoop je dat de punten van links onder naar rechts boven een redelijk rechte diagonale lijn vormen. Dit suggereert dat er geen grote afwijkingen van normaliteit zijn. In de Scatterplot van de gestandaardiseerde residuen (het tweede plot) hoop je dat de residuen ruwweg rechthoekig verdeeld zijn, waarbij de meeste scores in het midden liggen (rond het 0-punt). Aan de hand van de Scatterplot kun je tevens outliers identificeren. Outliers kunnen ook worden geïdentificeerd door de Mahalanobis afstanden te inspecteren. Deze zijn niet zichtbaar in de output, maar zijn aan het eind van de data file als extra variabele toegevoegd. Om te achterhalen welke scores outliers zijn, heb je een kritieke chi-square waarde nodig. Tabachnik en Fidell suggereren het gebruik van een alfa-waarde van .001.

Stap 2: Evalueren van het model

Kijk in de Model Summary box en controleer de waarde onder het kopje R Square; dit vertelt je hoeveel van de variantie in de afhankelijke variabele verklaard wordt door het model. Het valt je misschien op dat er ook een Adjusted R Square-waarde in de output staat. Wanneer je een kleine steekproef hebt, is de R square-waarde vaak een optimistische overschatting van de echte populatiewaarde. De Adjusted R Square-statistiek ‘corrigeert’ deze waarde en voorziet van een betere schatting van de echte populatiewaarde. Dus als je een kleine steekproef hebt, kan je beter deze waarde rapporteren. Om de statistische significantie van de resultaten te achterhalen, moet je in de ANOVA-tabel kijken; deze test de nulhypothese dat meervoudige R in de populatie gelijk is aan 0.

Stap 3: Evalueren van alle onafhankelijke variabelen

Het volgende dat je wil weten is welke van de variabelen in het model bijdraagt aan de voorspelling van de afhankelijke variabele. We vinden deze informatie in de output-box, genaamd Coefficients. Kijk in Beta-kolom onder Standardized Coefficients. Om de verschillende variabelen met elkaar te kunnen vergelijken is het belangrijk dat je kijkt naar de gestandaardiseerde coëfficiënten en niet de ongestandaardiseerde (B); deze laatste gebruik je alleen als je een regressievergelijking wilt opstellen.

Controleer voor alle onafhankelijke variabelen de waarde in de Sig.-kolom; dit vertelt je of deze variabele een significante unieke bijdrage levert aan de vergelijking. Dit is erg afhankelijk van welke variabelen opgenomen zijn in de vergelijking en hoeveel overlap er is tussen de onafhankelijke variabelen. Als de Sig.-waarde kleiner is dan .05 (.01, .001, etc.), levert de variabele een significante unieke bijdrage aan de voorspelling van de afhankelijke variabele.

Een ander potentieel nuttig informatieonderdeel in de coëfficiëntentabel is de Part correlatiecoëfficiënten (soms ook wel semipartial correlation coefficients genoemd). Als je deze waarde kwadrateert, krijg je een indicatie van de bijdrage van die variabele aan de totale R-square. Met andere woorden, het vertelt je hoeveel van de totale variantie in de afhankelijke variabele uniek verklaard wordt door die variabele en hoeveel R-square zou zakken als deze variabele niet in je model opgenomen zou zijn.

13.5 Wat is hiërarchische meervoudige regressie?

Bij deze vorm van meervoudige regressie worden de variabelen in stappen in een vooraf bepaalde volgorde toegevoegd.

Procedure voor hiërarchische meervoudige regressie

  1. Klik in het menu bovenaan het scherm op Analyze, selecteer vervolgens Regression en daarna Linear.

  2. Kies je continue afhankelijke variabele en verplaats deze naar de Dependent box.

  3. Verplaats de variabelen waarvoor je wilt controleren naar de Independant box; deze vormen het eerste blok die ingevoerd zullen worden in de analyse.

  4. Klik op Next, dit levert een tweede onafhankelijke variabelen box op waarin je het tweede blok variabelen aan toe kunt voegen.

  5. Kies je volgende blok onafhankelijke variabelen.

  6. Zorg dat dit op default staat in de Method box (Enter).

  7. Klik op Statistics en vink de volgende opties aan: Estimates, Model fit, R squared change, Descriptives, Part and partial correlations en Collinearity diagnostics. Klik op Continue.

  8. Klik op Options. Klik in het Missing Values gedeelte op Exclude cases pairwise en klik op Continue.

  9. Klik op de Plots knop.

  10. Klik op *ZRESID en de pijl om deze te verplaatsen naar de Y-box.

  11. Klik op *ZPRED en de pijl om deze te verplaatsen naar de X-box.

  12. Vink in het Standardized Residual Plots de optie Normal probability plot aan en klik op Continue.

  13. Klik op Save. Vink in het Distances gedeelte Mahalanobis box en Cook’s aan. Klik op Continue en vervolgens op OK (of op Paste om de Syntax Editor op te slaan).

13.6 Hoe interpreteer je de hiërarchische meervoudige regressie output?

De output van deze regressieanalyse lijkt op die van de standaard meervoudige regressie, met hier en daar wat extra informatie. In de Model Summary box vind je twee modellen. Model 1 verwijst naar het eerste blok variabelen die is toegevoegd en Model 2 omvat alle variabelen die in beide blokken zijn toegevoegd.

Stap 1: Evalueren van het model

Controleer de R Square-waarden in de eerste Model Summary box. Let op! De tweede R square-waarde omvat alle variabelen van beide blokken en dus niet alleen de variabelen die tijdens de tweede stap zijn toegevoegd. Om te achterhalen hoeveel van de totale variantie wordt verklaard door de variabelen waarin je geïnteresseerd bent, kijk je in de kolom R Square change en de bijbehorende Sig. F change.

Stap 2: Evalueren van alle onafhankelijke variabelen

Om te achterhalen hoe goed alle variabelen bijdragen aan de uiteindelijke vergelijking, moet je kijken in de Coefficients tabel in de Model 2 rij. Dit vat de resultaten samen waarbij alle variabelen in de vergelijking zijn opgenomen. In de Sig. kolom zie je of de variabelen een unieke statistisch significante bijdrage leveren.

13.7 Op welke manier kan je meervoudige regressie resultaten presenteren?

Afhankelijk van het type analyse dat je hebt uitgevoerd en de aard van de onderzoeksvraag, zijn er een aantal verschillende manieren waarop de resultaten van meervoudige regressie kunnen worden gepresenteerd. Je moet minstens de volgende informatie noemen: (1) wat voor soort analyse je hebt uitgevoerd (standaard of hiërarchisch), (2) gestandaardiseerde (beta) waarden in het geval van een theoretisch onderzoek of ongestandaardiseerde (B) coëfficiënten in het geval van een toegepast onderzoek. Indien je een hiërarchische meervoudige regressie hebt uitgevoerd, dien je tevens de R square waarde veranderingen (value changes) voor iedere stap te noemen, samen met de waarschijnlijkheidswaarden (probability values).

Waartoe dient logistische regressie? - Chapter 14 (5)

Aan de hand van logistische regressie kun je modellen testen waarmee je categorische uitkomsten – bestaande uit twee of meerdere categorieën – kunt voorspellen. Aan de hand van logistische regressie kan je meten hoe goed jouw verzameling voorspellende variabelen in staat is om jouw categorische afhankelijke variabele te voorspellen of verklaren. Het biedt je een indicatie van de toereikendheid van je model door de ‘goodness of fit’ in kaart te brengen. Je onafhankelijke variabele kan zowel categorisch als continu zijn, of een combinatie van beide. In dit hoofdstuk laat Pallant zien hoe je een binomiale (ook wel binaire) logistische regressie uitvoert met een dichotome afhankelijke variabele (dus met slechts twee categorieën of waarden). Indien je afhankelijke variabele bestaat uit meerdere categorieën, zal je een multinomiale logistische regressie moeten uitvoeren. Deze wordt niet in dit hoofdstuk besproken, maar is uiteraard wel beschikbaar in SPSS (zie het Help-menu).

14.1 Welke assumpties horen bij logistische regressie?

Steekproefgrootte

Net als bij alle andere analyses is het belangrijk dat je steekproefgrootte voldoende is. Voer altijd Descriptive Statistics uit over elk van je onafhankelijke variabelen en overweeg om categorieën met te weinig casussen te verwijderen.

Multicollineariteit

Controleer altijd of er hoge intercorrelaties tussen je onafhankelijke variabelen zijn. Begin hiermee door collinearity diagnostics op te vragen onder de Statistics-knop. Negeer de rest van de output en richt je enkel op de Coefficients tabel en de kolommen genaamd Collinearity Statistics. Zeer lage tolerance waarden (

Outliers

Het is belangrijk voor outliers te controleren. Dit kan door de residuen te inspecteren.

14.2 Wat is de procedure bij logistische regressie?

Om de resultaten van logistische regressie te kunnen interpreteren, is het belangrijk dat je de codering van responsen van elk van je variabelen nauwkeurig opstelt. Voor de dichotome afhankelijke variabele moet je de responsen coderen als 0 en 1. De 0-waarde wijs je toe aan responsen waaruit een gebrek of afwezigheid blijkt van het kenmerk waarin je geïnteresseerd bent. De 1-waarde wijs je toe aan responsen waaruit aanwezigheid blijkt van het kenmerk waarin je geïnteresseerd bent. Voor je categorische onafhankelijke variabelen voer je een soortgelijke procedure uit. Voor continue onafhankelijke variabelen koppel je hoge waarden aan de waarden van het kenmerk waarin je geïnteresseerd bent (bijv. 0 uur slaap krijg waarde 0 en 10 uur slaap, waarde 10).

Procedure voor logistische regressie

Voor je met de onderstaande procedure begint, ga eerst naar Edit in het hoofdmenu. Selecteer daar Options en zorg dat de box No scientific notation for small numbers in tables is aangevinkt.

  1. Klik in het menu bovenaan het scherm op Analyze, selecteer vervolgens Regression en daarna Binary Logistic.

  2. Verplaats je categorische afhankelijke variabele naar de Dependent box. Verplaats je onafhankelijke variabelen naar de Covariates box. Zorg dat bij Method de Enter-optie vertoond wordt.

  3. Als je categorische (nominaal of ordinaal) onafhankelijke variabelen hebt, klik dan op de Categorical-knop. Markeer alle categorische variabelen en verplaats ze naar de Categorical covariates box. Markeer weer al je categorische variabelen en klik op de First-knop in het Change contrast gedeelte. Klik op Change en je ziet het woord (first) verschijnen achter de naam van de variabele. Herhaal dit voor alle categorische variabelen. Klik op Continue.

  4. Klik op Options. Selecteer de volgende opties: Classification plots, Hosmer-Lemeshow goodness of fit, Casewise listing of residuals en CI for Exp(B).

  5. Klik op Continue en vervolgens op OK (of op Paste om de Syntax Editor op te slaan).

14.3 Hoe interpreteer je de logistische regressie output?

Het eerste waar je in je output naar moet kijken zijn de details met betrekking tot je steekproefgrootte. Deze vindt je in de Case Processing Summary tabel. Zorg ervoor dat hier het aantal proefpersonen in staan dat je hebt ingevoerd. De volgende tabel, Dependent Variable Encoding, laat zien hoe SPSS je afhankelijke variabele heeft gecodeerd. Controleer in de tabel die daarna volgt (Categorical Variables Coding) de codering van je onafhankelijke variabelen. Controleer ook in de Frequency kolom het aantal casussen per categorie; je wilt geen groepen met zeer kleine aantallen.

Het volgende output gedeelte (Block 0) betreft de resultaten van de analyse zonder dat een van de onafhankelijke variabelen in het model is opgenomen; dit dient als baseline om te vergelijken met het model waarin de variabelen wel zijn opgenomen. Ga nu eerst naar het volgende gedeelte; Block 1. Hier wordt je model (met daarin de onafhankelijke variabelen) getoetst. De Omnibus Tests of Model Coefficients biedt een algemene indicatie van hoe goed het model presteert, vergeleken met de resultaten uit Block 0, waar geen van de onafhankelijke variabelen in het model zijn opgenomen. Dit wordt ook wel de ‘goodness of fit’ toets genoemd. Hier wil je een hoge significante waarde (Sig. waarde Hosmer and Lemeshow Test bieden ondersteuning voor de goodness of fit van je model. Let wel op dat deze test heel anders geïnterpreteerd wordt dan de omnibus test. Voor de Hosmer and Lemeshow Goodness of Fit Test wordt een slechte fit aangeduid met een significantiewaarde kleiner dan .05, wat betekent dat je hier dus juist een hoge significantiewaarde wil zien.

Ook de tabel Model Summary geeft informatie over de bruikbaarheid van het model. De Cox & Snell R Square en de Nagelkerke R Square waarden bieden een indicatie van de hoeveelheid variatie in de afhankelijke variabele die door het model wordt verklaard (variërend van 0 tot 1).

De Classification Table voorziet van een indicatie van hoe goed het model in staat is om voor iedere casus de juiste categorie te voorspellen. Deze tabel kan je vergelijken met de Classification Table uit Block 0 om te achterhalen hoeveel verbetering er optreedt in het model wanneer de onafhankelijke variabelen zijn opgenomen.

De sensitiviteit van het model is het percentage van de groep die het kenmerk bevat waarin je geïnteresseerd bent en die correct door het model zijn vastgesteld (‘true positives’). De specificiteit van het model is het percentage van de groep die niet het kenmerk bevat waarin je geïnteresseerd bent en correct zijn vastgesteld (‘true negatives’). De positief voorspellende waarde is het percentage casussen waarvan het model stelt dat ze over het kenmerk beschikken en die ook daadwerkelijk over dit kenmerk beschikken. De negatief voorspellende waarde is het percentage casussen waarvan het model stelt dat ze niet over het kenmerk beschikken en die ook daadwerkelijk niet over dit kenmerk beschikken.

De Variables in the Equation tabel geeft aan de hand van de Wald test informatie over de bijdrage of het belang van elk van je onafhankelijke variabelen; deze kun je aflezen in de Wald-kolom. Ga nu in de Sig.-kolom op zoek naar waarden kleiner dan .05; dit zijn de variabelen die significant bijdragen aan de voorspellende waarde van het model. Kijk of de B-waarden positief of negatief zijn; dit zegt iets over de richting van het verband. Als je alle variabelen correct gecodeerd hebt, betekenen negatieve B-waarden dat een toename in de onafhankelijke variabele-score zal resulteren in een verminderde kans dat de casus een score van 1 op de afhankelijke variabele zal hebben. Voor positieve B-waarden geldt het tegenovergestelde. Nog een ander nuttig informatieonderdeel in de Variables in the Equation tabel vindt je in de Exp(B)-kolom; deze waarden zijn de odds ratios (OR) voor elk van je onafhankelijke variabelen. Volgens Tabachnick en Fidell representeren de OR “the change in odds of being in one of the categories of outcome when the value of a predictor increases by one unit”. OR kleiner dan 1 zetten we het liefst om (1 gedeeld door de waarde) wanneer we deze rapporteren ten behoeve van de interpretatie.

Voor elk van de OR wordt een 95% betrouwbaarheidsinterval gegeven (95% CI for EXP(B)); deze dien je te noemen in je resultaten.

De laatste tabel in de output (Casewise List) biedt informatie over casussen in je steekproef voor wie het model niet goed past. Casussen met ZResid-waarden boven 2.5 of onder -2.5 zijn outliers en moeten daarom nauwkeuriger worden onderzocht.

14.4 Hoe worden de resultaten gerapporteerd?

Een voorbeeldrapportage van de resultaten van de logistische regressie begint met het benoemen van de methode en het doel van de analyse. Vervolgens wordt het model inclusief de relevante variabelen beschreven, waarna de belangrijkste resultaten in woordelijke tekst gepresenteerd worden en alle relevante resultaten in een tabel opgenomen worden.

Wat maakt factoranalyse zo uniek? - Chapter 15 (5)

Factoranalyse verschilt van veel van de andere technieken die in dit boek worden besproken. Het is niet ontworpen om hypothesen te toetsen of om aan te geven of de ene groep significant verschilt van de andere groep. In plaats daarvan neemt het een grote reeks variabelen en zoekt naar een manier om de data te ‘reduceren’ of samen te vatten door het gebruik van een kleinere verzameling factoren of componenten. Dit wordt gedaan door te zoeken naar clusters of groepen tussen de intercorrelaties van een verzameling variabelen. Er zijn twee kernbenaderingen van de factoranalyse: (1) exploratieve factoranalyse – vaak gebruikt tijdens de vroege onderzoekstadia om informatie over de relaties tussen een verzameling variabelen te verzamelen – en (2) confirmatieve factoranalyse – later in het onderzoeksproces toegepast om specifieke hypothesen of theorieën betreffende de onderliggende structuur van een verzameling variabelen te toetsen.

De term ‘factoranalyse’ omvat een verscheidenheid aan verschillende gerelateerde technieken. Een van de belangrijkste onderscheidingen is die tussen de principale componentenanalyse (PCA) en factoranalyse (FA). Deze twee technieken lijken in veel opzichten op elkaar; beide trachten een kleiner aantal lineaire combinaties van de oorspronkelijke variabelen te produceren op een wijze die het grootste deel van de variabiliteit in het correlatiepatroon omvat (of deze kan verklaren). Uiteraard zijn er ook verschillen; bij PCA worden de oorspronkelijke variabelen getransformeerd naar een kleinere verzameling lineaire combinaties waarbij gebruik wordt gemaakt van alle variantie in de variabelen, terwijl bij FA de factoren worden geschat met behulp van een wiskundig model waarbij enkel de gedeelde variantie wordt geanalyseerd.

In dit hoofdstuk wordt de PCA gedemonstreerd.

15.1 In welke stappen wordt een factoranalyse gedaan?

Stap 1: Assessment van de geschiktheid van de data (assumpties)

<

p>Er zijn twee belangrijke kwesties waar je rekening mee dient te houden tijdens het bepalen van de geschiktheid van je dataset voor factoranalyse: steekproefgrootte en de sterkte van de relatie tussen je variabelen (of items). Voor de steekproefgrootte zijn niet echt duidelijke richtlijnen. Over het algemeen geldt; hoe groter, hoe beter. Mocht je een kleine steekproef (<150) of heel veel variabelen hebben, zoek dan meer informatie op over factoranalyse.

De tweede kwestie betreft de sterkte van de intercorrelaties tussen de items. Tabachnick en Fidell raden aan dat correlatiecoëfficiënten een waarden van groter dan .3 hebben. SPSS biedt twee statistische metingen die kunnen helpen met het bepalen van de ‘factorability’ van de data: (1) Bartlett’s test voor sphericiteit, en (2) Kaiser-Meyer-Olkin (KMO) meting voor steekproef adequatie. Bartlett’s test moet significant zijn (p

Stap 2: Factorextractie

Factorextractie omvat het vaststellen van het kleinste aantal factoren die het best kunnen worden gebruikt om de interrelaties tussen de verzameling variabelen te representeren. Er zijn verschillende benaderingen die kunnen worden toegepast om het aantal onderliggende factoren of dimensies te identificeren, waarvan PCA de meest gebruikte is. Het is aan de onderzoeker om het aantal factoren vast te stellen dat volgens hem/haar de beste weergave is van de onderliggende relatie tussen de variabelen. Technieken die kunnen worden toegepast om te helpen bij het vaststellen van het aantal factoren zijn:

  1. Kaiser’s criterium: ook wel bekend als de eigenwaarde-regel. Aan de hand van deze regel worden alleen factoren met een eigenwaarde van 1.0 of meer gebruikt voor verder onderzoek.

  2. Catell’s scree test: bij deze test worden alle eigenwaarden van de factoren geplot en wordt in dit plot vervolgens gezocht naar het punt waarop de vorm van de curve van richting verandert en horizontaal wordt. Catell adviseert om alle factoren boven dit punt te behouden.

  3. Horn’s parallelle analyse: dit omvat het vergelijken van de grootte van de eigenwaarden met de eigenwaarden die zijn verkregen uit een willekeurig gegenereerde dataset van dezelfde grootte. Alleen de eigenwaarde die de corresponderende waarden van de willekeurige dataset overschrijven, worden behouden. Deze benadering blijkt het meest accuraat (Kaiser’s criterium en Catell’s scree test zijn geneigd het aantal componenten te overschatten).

Stap 3: Factorrotatie en interpretatie

Nadat het aantal factoren is bepaald, moeten deze geïnterpreteerd worden. Om dit proces te vergemakkelijken, worden de factoren ‘geroteerd’. SPSS laat zien welke variabelen samenklonteren; het is aan jou om hier mogelijke interpretaties aan te geven.

Er zijn twee algemene rotatiebenaderingen die resulteren in orthogonale (niet gecorreleerde) of oblieke (gecorreleerde) factoroplossingen. In de praktijk resulteren deze twee benaderingen vaak in soortgelijke resultaten, vooral wanneer het correlatiepatroon tussen de items helder is. Pallant adviseert om te beginnen met oblieke rotatie om de mate van correlatie tussen je factoren te onderzoeken.

Binnen de twee brede categorieën van rotatiebenaderingen zijn er in SPSS een aantal verschillende technieken beschikbaar. De meest gebruikte orthogonale techniek is de Varimax methode; deze tracht het aantal variabelen met hoge ladingen op iedere factor te minimaliseren. De meest gebruikte oblieke techniek is Direct Oblimin.

15.2 Wat is de procedure voor Factoranalyse?

Voor je met de onderstaande procedure begint, ga eerst naar Edit in het hoofdmenu. Selecteer daar Options en zorg dat de box No scientific notation for small numbers in tables is aangevinkt.

  1. Klik in het menu bovenaan het scherm op Analyze, selecteer vervolgens Dimension Reduction en daarna Factor.

  2. Selecteer alle benodigde variabelen (of items) en verplaats ze naar de Variables box.

  3. Klik op de Descriptives-knop. Zorg dat in het Statistics gedeelte Initial Solution aangevinkt is. Selecteer in het Correlation Matrix gedeelte de opties Coefficients en KMO and Bartlett’s test of sphericity. Klik op Continue.

  4. Klik op de Extraction-knop.
    Zorg dat in het Method gedeelte Principal components wordt getoond, of kies een van de andere factorextractietechnieken (bijv. Maximum likelihood). Selecteer in het Analyze gedeelte de Correlation matrix. In het Display gedeelte moeten Screeplot en de Unrotated factor solution worden geselecteerd. Selecteer in het Extraction gedeelte de optie Based on Eigenvalue of klik op Fixed number of factors indien je een specifiek aantal factoren wil specificeren en type het aantal gewenste factoren in. Klik op Continue.

  5. Klik op de Rotation-knop. Kies Direct Oblimin en klik op Continue.

  6. Klik op de Options-knop en selecteer in het Missing Values gedeelte de optie Exclude cases pairwise. Selecteert in het Coefficient Display Format gedeelte de opties Sorted by size en Surpress small coefficients. Type in de box naar Absolute value below de waarde van .3 in. Dit betekent dat alleen factorladingen met een waarde groter dan .3 vertoond zullen worden, wat de output makkelijker te interpreteren maakt.

  7. Klik op Continue en vervolgens op OK (of op Paste om de Syntax Editor op te slaan).

15.3 Hoe interpreteer je de van factoranalyse output? Deel 1

Stap 1: geschiktheid van je dataset beoordelen

Kijk of de Kaiser-Meyer-Olkin Measure of Sampling Adequacy (KMO) waarde .6 of hoger is en dat de waarde van Bartlett’s test of sphericity significant (.05 of kleiner) is om te verifiëren of je dataset geschikt is voor factoranalyse. Zoek in de Correlation Matrix tabel naar correlatiecoëfficiënten van .3 of hoger.

Stap 2: Factorextractie met behulp van Kaiser’s criterium

Om vast te stellen hoeveel componenten aan het criterium van een eigenwaarde van 1 of hoger voldoen, moet je kijken in de Total Variance Explained tabel. Kijk naar de waarden in de eerste reeks kolommen (Initial Eigenvalues). In de Cumulative % kolom zie je hoeveel procent van de variantie de componenten verklaren.

Stap 3: Factorextractie met behulp van Catell’s scree test

Kaiser’s criterium geeft vaak teveel componenten. Daarom is het belangrijk ook naar de Screeplot te kijken. Zoek naar het punt waarop de vorm van de curve van richting verandert en horizontaal wordt. Alle factoren boven dit punt moet je behouden.

Stap 4: Factorextractie met behulp van parallelle analyse

Voor parallelle analyse, de derde manier om het aantal factoren vast te stellen, moet je gebruik maken van de lijst met eigenwaarden in de Total Variance Explained tabel en extra informatie die je aan de hand van een ander statistisch programma (verkrijgbaar via de website van dit boek) kunt verkrijgen. Volg de link naar de Additional Material site en download de zip-file (parallel analysis.zip) op je computer. Unzip dit bestand op je harde schijf en klik op de file MonteCarloPA.exe. Het programma Monte Carlo PCA for Parallel Analysis wordt nu gestart, waarin je vervolgens de volgende informatie moet invoeren: (1) het aantal variabelen dat je wilt analyseren, (2) het aantal participanten in je steekproef, en (3) het aantal replicaties). Klik op Calculate. Vervolgens moet je de eerste eigenwaarde die je in SPSS hebt verkregen systematisch vergelijken met de eerste waarde uit de resultaten van de parallelle analyse. Indien je waarde groter is dan de criteriumwaarde uit de parallelle analyse, behoud je deze factor; als je waarde kleiner is, verwerp je deze.

Stap 5: Factorladingen inspecteren

In de tabel Component Matrix vind je de ongeroteerde ladingen van elk van de items op de verschillende componenten. SPSS gebruikt Kaiser’s criterium als standaard techniek.

Stap 6: Inspecteer de geroteerde factoroplossing

Voor je een definitief besluit maakt betreffende het aantal factoren, dien je te kijken naar de geroteerde factoroplossing in de Pattern Matrix tabel: deze toont de itemladingen op de verschillende factoren. Idealiter wil je minstens drie itemladingen per component. Indien dit niet het geval is, zal je een oplossing met minder factoren moeten vinden. Volg in dit geval de onderstaande procedure:

  1. Herhaal alle stappen die eerder in dit hoofdstuk worden genoemd. Let op: wanneer je nu op de Extraction-knop klikt, selecteer dan Fixed number of factors. In de box naast Factors to extract type je het aantal factoren in dat je wilt extraheren.

  2. Klik op Continue en vervolgens op OK.

15.4 Hoe interpreteer je de van factoranalyse output? Deel 2

Het eerste dat je moet checken, is het percentage variantie dat door de nieuwe factoroplossing wordt verklaard; dit staat in de Total Variance Explained tabel. Na rotatie van de nieuwe factoroplossing, vind je aan het eind van je output drie nieuwe tabellen waar je naar moet kijken. Allereerst de Component Correlation Matrix (aan het eind van je output); deze laat de sterkte van de relatie tussen de factoren zien. Dit geeft je informatie voor je besluit of het redelijk was om ervan uit te gaan dat de componenten niet gerelateerd zijn aan elkaar (en dus de Varimax rotatie toegepast kan worden), of dat de Oblimin rotatie oplossing toegepast en gerapporteerd moet worden.

Oblimin rotatie levert twee tabellen van factorladingen op. De Pattern Matrix geeft de factorladingen van elk van de variabelen weer. Zoek naar de hoogst geladen items op elk component om zo het component te identificeren en een naam te geven. De Structure Matrix tabel levert informatie op over de correlatie tussen variabelen en factoren. Indien je de Oblimin rotatie oplossing in je output moet presenteren, moet je beide tabellen weergeven.

Eerder in de output vind je de tabel genaamd Communalities; deze tabel geeft informatie over hoeveel variantie in elk item verklaard wordt. Lage waarden (

15.5 Op welke manier worden de resultaten gerapporteerd?

De informatie die je in je resultaten weergeeft is afhankelijk van je vakgebied, het soort verslag dat je schrijft en waar je verslag gepresenteerd zal worden. Indien je je onderzoek wil publiceren binnen het vakgebied van de psychologie en het onderwijs zijn er redelijk strikte eisen wat je in je artikel plaatst wanneer je gebruik heb gemaakt van factoranalyse. Allereerst moet je de details weergeven van de factorextractiemethode die je hebt gebruikt; dus de gebruikte criteria om het aantal factoren te bepalen, het type rotatietechniek, de totale verklaarde variantie, de oorspronkelijke eigenwaarden en de eigenwaarden na rotatie. In je verslag dien je een tabel met factorladingen op te nemen met daarin alle waarden (dus niet alleen waarden > .3). In het geval van de Varimax geroteerde oplossing moet de tabel ‘pattern/structure coefficients’ worden genoemd. In het geval van de Oblimin rotatie moeten zowel de Pattern Matrix, als de Structure Matrix coëfficiënten volledig worden gepresenteerd, samen met de informatie over de correlaties tussen de factoren.

Met welke statistische technieken kan men groepen vergelijken? (deel V) (5)

Welke technieken en hulpmiddelen komen van pas?

Er is zijn veel verschillende technieken om groepen te vergelijken in SPSS. In dit deel komen onder meer parametrische en niet-parametrische technieken aan de orde. Parametrische technieken doen een aantal veronderstellingen met betrekking tot de onderzochte groep en het soort data. Niet-parametrische technieken zijn vaak meer geschikte technieken voor kleinere onderzoeken of voor onderzoeken waarbij de verzamelde data alleen gemeten is op ordinaal niveau.

Enkele hulpmiddelen om te beslissen welke statistische techniek het best gebruikt kan worden:

  • T-tests worden alleen gebruikt wanneer er maar twee groepen zijn of twee meetmomenten.

  • Analyses van variatietechnieken gebruik je wanneer er meer dan twee groepen of twee meetmomenten zijn.

  • Gepaarde steekproef (paired-samples) technieken of technieken van herhaalde metingen worden gedaan wanneer het gaat om dezelfde mensen tijdens meer dan één gelegenheid, of wanneer er sprake is van gelijke paren.

  • Between-groups of onafhankelijke steekproeftechnieken worden gebruikt wanneer de deelnemers in elke groep verschillend zijn (of onafhankelijk).

  • Eenrichtingsanalyses gebruik je wanneer je maar één onafhankelijke variabele hebt.

  • Tweerichtingsanalyses gebruik je wanneer je twee onafhankelijke variabelen hebt.

  • Multivariate analyses worden gebruikt wanneer je meer dan één afhankelijke variabele hebt.

  • Covariantie analyse (ANCOVA) pas je toe wanneer je moet controleren voor een extra variabele die mogelijk de relatie tussen de afhankelijke en de onafhankelijke variabele beïnvloedt (confound variabele).

Wat zijn assumpties?

Er zijn een aantal algemene assumpties die van toepassing zijn op alle parametrische technieken die hier besproken worden. Daarnaast zijn er per specifieke techniek nog aanvullende assumpties. De algemene assumpties staan in deze paragraaf en de aanvullende assumpties worden in de volgende hoofdstukken over de specifieke technieken besproken.

Welk meetniveau wordt gebruikt?

Bij alle parametrische technieken wordt ervan uitgegaan dat de afhankelijke variabele wordt gemeten op interval of ratio niveau.

Wat voor steekproef wordt gebruikt?

Bij alle parametrische technieken wordt ervan uitgegaan dat de scores worden verkregen uit een willekeurige steekproef. Uiteraard is dit in realiteit niet altijd het geval.

Wat zijn onafhankelijke observaties?

Je observaties moeten onafhankelijk van elkaar zijn; dat wil zeggen, iedere observatie of meting mag niet worden beïnvloed door een andere observatie of meting. Situaties waar observaties of metingen in een groepssituatie worden verzameld, of waar proefpersonen een zekere mate van interactie met elkaar hebben vragen om meer specialistische technieken, zoals multi-level (of hiërarchische) modellen.

Van welke verdeling wordt uit gegaan?

Bij alle parametrische technieken wordt ervan uitgegaan dat de populatie waaruit de steekproef is getrokken normaal verdeeld is. Vaak is dit niet het geval. Gelukkig zijn de meeste technieken redelijk robuust of tolerant voor schendingen van deze assumptie. Indien de steekproef groot genoeg is, zou schending van deze assumptie geen ernstige problemen veroorzaken. De scoreverdeling van elk van je groepen kan gecheckt worden aan de hand van histogrammen, welke je in SPSS kunt opvragen in het Graphs menu.

Wat houdt homogeniteit van variantie in?

Bij parametrische testen wordt ervan uitgegaan dat steekproeven worden verkregen uit populaties met gelijke varianties. Dit betekent dat de variabiliteit van scores voor elk van de groepen gelijk is. Dit kan je in SPSS testen met behulp van Levene’s test voor gelijke varianties (onderdeel van de t-toets en analyse van variantieanalyses). Wees voorzichtig met interpretatie van deze test; je wilt dat de test niet significant (>.05) is. Indien de test namelijk wel significant is, betekent dit dat varianties van de twee groepen niet gelijk zijn en dus de assumptie van homogeniteit van variantie is geschonden. Gelukkig hoeft ook dit niet per se een groot probleem te zijn als de grootte van je groepen ongeveer gelijk is. Verder is het belangrijk dat je bij de juiste resultatensectie kijkt. SPSS geeft namelijk twee resultatenreeksen weer; een voor situaties waar de assumptie niet is geschonden, en een voor situaties waar de assumptie wel is geschonden.

Wat houden de Type 1 fout, Type 2 fout en kracht in?

Het doel van t-test en analyse van variantieprocedures is het toetsen van hypothesen. Met deze soorten analyses bestaat er altijd een kans om tot de verkeerde conclusies te komen. Er zijn twee verschillende fouten die gemaakt kunnen worden:

  • de nulhypothese wordt verworpen, ondanks dat deze correct is (Type 1 fout);

  • de nulhypothese wordt aangenomen, ondanks dat deze incorrect is (Type 2 fout).

Idealiter willen we dat de tests die we gebruiken nauwkeurig aangeven of er wel of geen daadwerkelijk verschil is tussen de onderzoeksgroepen. Dit wordt ook wel de power van de test genoemd. Factoren die de kracht van een test in een gegeven situatie kunnen beïnvloeden zijn:

  • de steekproefgrootte;

  • de effectgrootte;

  • het alfa-niveau dat door de onderzoeker is bepaald.

De kracht van een onderzoek is erg afhankelijk van de grootte van de steekproef. Indien je steekproef te klein is, is het mogelijk dat niet-significante resultaten te wijten zijn aan onvoldoende power. Stevens stelt voor dat het in deze gevallen handig kan zijn om het alfa-niveau aan te passen (bijv. een cut-off waarde van .1 in plaats van .05), om op die manier te compenseren voor de kleine steekproef.

Er zijn tabellen die weergeven hoe groot de steekproef moet zijn om voldoende power te bereiken, afhankelijk van de gewenste effectgrootte die je wil bereiken. Ook het programma G*Power kan dit berekenen.

Wat zijn geplande vergelijkingen en post-hoc analyses?

Wanneer er een variantieanalyse wordt uitgevoerd, heeft dat als doel om er achter te komen of er significante verschillen zijn onder de verschillende groepen of condities. Geplande vergelijkingen (ook wel bekend als priori) worden gebruikt wanneer je specifieke hypothesen over de verschillen tussen een subset van je onderzoeksgroepen wilt toetsen. Deze vergelijkingen moeten gespecificeerd en gepland worden voordat je je data gaat analyseren. Wees wel voorzichtig met deze benadering wanneer je van plan bent om veel verschillende vergelijkingen te specificeren. Geplande vergelijkingen controleren namelijk niet voor toegenomen risico's van Type 1 fouten. Indien er veel verschillen zijn die je wil onderzoeken, kan je misschien beter de alternatieve benadering (post-hoc vergelijkingen) toepassen; deze benadering is ontworpen om je resultaten te behouden van Type 1 fouten.

Het andere alternatief is het toepassen van de Bonferroni methode. Deze past het alfa-niveau aan, wat inhoudt dat er voor elke vergelijking een strenger alfa-niveau komt, om zo de alfa over alle toetsen op een redelijk niveau in te kunnen stellen.

Post-hoc vergelijkingen (ook wel bekend als posteriori) worden gebruikt wanneer er een hele reeks vergelijkingen wordt uitgevoerd waarbij de verschillen tussen elk van de groepen of de condities in het onderzoek worden onderzocht. De post-hoc vergelijkingen zijn ontworpen om te waken voor de mogelijkheid van een verhoogde Type 1 fout wat veroorzaakt wordt door het grote aantal verschillende vergelijkingen dat gemaakt wordt.

Er zijn een aantal verschillende post-hoc tests die toegepast kunnen worden. Deze variëren in termen van hun aard en de nauwkeurigheid. Twee van de meest gebruikte post-hoc tests zijn Tukey’s HSD en de Scheffe test, waarvan de Scheffe test de meest voorzichtige methode is om het risico op een Type 1 fout te verminderen. Dit gaat echter wel ten koste van de power.

Wat is de effectgrootte?

Hoewel alle technieken die in dit gedeelte worden besproken een indicatie geven of de verschillen tussen je groepen al dan niet statistisch significant zijn, bieden ze geen duidelijke indicatie betreffende de mate waarin de twee variabelen met elkaar geassocieerd zijn. In het geval van grote steekproeven kunnen zelfs zeer kleine verschillen tussen groepen statistisch significant zijn. Dit betekent niet dat het verschil enige praktische of theoretische betekenis heeft.

Een manier om het belang van de bevindingen te beoordelen, is door de effectgrootte te berekenen. Dit is een reeks van statistieken dat een indicatie geeft van de relatieve magnitude van de verschillen tussen gemiddelden, of de hoeveelheid van de totale variantie in de afhankelijke variabele die voorspeld kan worden aan de hand van de kennis van de niveaus van de onafhankelijke variabele.

Er zijn een aantal verschillende statistieken om de effectgrootte te berekenen. De meest gebruikte om groepen te vergelijken zijn de partiële eta squared en Cohen’s d. Partiële eta squared effectgrootte statistieken geven het percentage van de variantie van de afhankelijke variabele weer, dat wordt verklaard door de onafhankelijke variabele. Waarden kunnen variëren van 0 tot 1. Cohen’s d daarentegen, geeft verschillen in groepen weer in termen van de standaardafwijking.

Om de sterkte van de verschillende effectgrootte statistieken te kunnen interpreteren, stelde Cohen de volgende richtlijnen op. Deze zijn bedoeld om te gebruiken bij de beoordeling van onderzoeken waarbij verschillende groepen worden vergeleken. Voor correlationele onderzoeken gelden andere richtlijnen.

Effectgrootte

Eta squared

(% van de verklaarde variantie)

Cohen’s d

Klein

.01 of 1%

.2

Middel

.06 of 6%

.5

Groot

.138 of 13,8%

.8

Wat te doen bij ontbrekende data?

Bij het doen van onderzoek, in het bijzonder naar mensen, verkrijg je zelden van iedere casus alle gegevens. Daarom is het belangrijk dat bij het onderzoek ook gekeken wordt naar de ontbrekende data. Dit kan in SPSS met behulp van de Missing Value Analysis procedure (onderste optie in het Analyze menu). Tevens moet je beslissen hoe je tijdens het uitvoeren van statistische analyses met ontbrekende data omgaat. De Options-knop in veel van de statistische procedures in SPSS biedt diverse keuzemogelijkheden betreffende het omgaan met ontbrekende data. Het is belangrijk dat je hier zorgvuldig uit kiest, aangezien het grote gevolgen kan hebben op je resultaten. De verschillende opties voor het omgaan met ontbrekende data zijn:

  • De Exclude cases listwise-optie neemt alle casussen in de analyses mee, mits er geen sprake is van ontbrekende data. Een casus waarbij sprake is van ontbrekende data wordt volledig buiten de analyse gehouden.

  • De Exclude cases pairwise-optie (soms ook aangeduid als Exclude cases analysis by analysis) sluit alleen casussen uit indien de benodigde data voor een specifieke analyse ontbreekt. Ze worden wel meegenomen in een analyse waarvoor ze de benodigde informatie bevatten.

  • De Replace with mean-optie berekent de gemiddelde waarde voor de variabele en geeft elke missende casus deze waarde. Deze optie dient nooit te worden gebruikt, omdat het de resultaten van je analyse ernstig kan verstoren.

Het wordt sterk aangeraden om de optie exclude cases pairwise te gebruiken, tenzij er een zeer dringende reden is anders te doen.

Vreemd uitziende getallen

Soms is het mogelijk dat bij de resultaten vreemd uitziende getallen tevoorschijn komen. Ze zien er dan uit als ‘1.24E-02’; dit zijn kleine waarden die in een wetenschappelijke notatie zijn weergegeven Om dit te voorkomen is het raadzaam om in het hoofdmenu naar Edit te gaan, daar Options te selecteren en ervoor te zorgen dat de box No scientific notation for small numbers in tables is aangevinkt.

Wat zijn niet-parametrische statistieken? - Chapter 16 (5)

Niet-parametrische statistieken zijn ideaal wanneer je data is gemeten op een nominale of ordinale schaal. Ze zijn ook handig wanneer je beschikt over zeer kleine steekproeven en wanneer je data niet voldoet aan de assumpties van de parametrische technieken.

IBS SPSS geeft diverse niet-parametrische technieken voor verschillende situaties. De toetsen die in dit hoofdstuk besproken worden vindt je hieronder, samen met het parametrische alternatief.

16.1 Welke niet-parametrische technieken zijn er?

Niet-parametrische techniek

Parametrisch alternatief

Chi-square test voor goodness of fit

Geen

Chi-square test voor onafhankelijkheid

Geen

McNemar’s Test

Geen

Cochran’s Q Test

Geen

Kappa Measure of Agreement

Geen

Mann-Whitney U Test

T-toets voor onafhankelijke steekproeven (H.17)

Wilcoxon Signed Rank Test

T-toets voor gepaarde steekproeven (H.17)

Kruskal-Wallis Test

One-way between-groups ANOVA (H.18)

Friedman Test

One-way repeated measures ANOVA (H.18)

Assumpties voor niet-parametrische technieken

Algemene assumpties van niet-parametrische technieken waarvoor gecontroleerd moet worden, zijn:

  • Willekeurige steekproeven

  • Onafhankelijke observaties (met uitzondering van de technieken waarbij herhaalde metingen worden uitgevoerd).

Verder hebben sommige technieken nog aanvullende assumpties; deze zullen per techniek besproken worden.

16.2 Hoe ziet de chi-square test voor goodness of fit er uit?

Deze test, ook wel de one-sample chi-square genoemd, wordt vaak gebruikt om de proportie casussen uit een steekproef te vergelijken met hypothetische waarden of eerder verkregen waarden uit vergelijkbare populaties. Het enige dat je in de data-file nodig hebt, is één categorische variabele en een specifieke proportie waartegen je de geobserveerde frequenties wilt toetsen.

Procedure voor chi-square test voor goodness of fit

  1. Klik in het menu bovenaan het scherm op Analyze, selecteer vervolgens Non-parametric Tests, daarna Legacy Dialogs en vervolgens Chi-square.

  2. Verplaats de categorische variabele naar de Test Variable List box. Klik in het Expected Values gedeelte op de Values-optie. In de Values box moet je de waarden van je variabelen invullen: De eerste waarde correspondeert met de verwachte proportie voor de eerste gecodeerde waarde van de variabele (bijv. 1 = ja). Klik op Add. De tweede waarde is de verwachte proportie voor de tweede gecodeerde waarde (bijv. 2 = nee). Klik op Add. Etc.

  3. Klik op OK (of op Paste om de Syntax Editor op te slaan).

Interpretatie van de output

In de eerste tabel vind je de geobserveerde frequenties van de huidige data-file. In de Test Statistics tabel staan de resultaten van de Chi-Square Test – welke de verwachte en geobserveerde waarden met elkaar vergelijkt – gerapporteerd.

Rapporteren van de resultaten

In de resultaten moet je de chi-square waarde, de vrijheidsgraden (df) en de p-waarde (Asymp. Sig.) presenteren.

16.3 Hoe ziet de chi-square test voor onafhankelijkheid er uit?

Deze test wordt gebruikt wanneer je de relatie tussen twee categorische variabelen wilt onderzoeken. Elk van deze variabelen kunnen twee of meerdere categorieën hebben. De chi-square test voor onafhankelijkheid vergelijkt de geobserveerde frequenties of proporties casussen die in elk van de categorieën voorkomen met de waarden die verwacht worden indien er geen associatie is tussen de gemeten variabelen. Wanneer SPSS een 2x2 tabel tegenkomt (2 categorieën in elke variabele), omvat de output een aanvullende correctiewaarde (Yates’ Correction for Continuity); deze waarde is ontworpen om te compenseren voor wat sommige onderzoekers beschouwen als een overschatting van de chi-square waarde wanneer deze wordt gebruikt in een 2x2 tabel.

Aanvullende assumpties

De laagst verwachte frequentie moet voor iedere cel minstens 5 zijn. Als je een 2x2 tabel hebt, wordt aangeraden een minimale verwachte frequentie van 10 te hebben. Als je een 2x2 tabel hebt die deze assumptie schendt, zou je moeten overwegen om in plaats daarvan Fisher’s Exact Probability Test te rapporteren.

Procedure

  1. Klik in het menu bovenaan het scherm op Analyze, selecteer vervolgens Descriptive Statistics en daarna Crosstabs.

  2. Klik op de variabele(n) die je je rij-variabele(n) wil maken en verplaats deze naar de Row(s) box.

  3. Klik op de andere variabele(n) die je je kolom-variabele(n) wil maken en verplaats deze naar de Column(s) box.

  4. Klik op de Statistics-knop. Vink Chi-square en Phi and Cramer’s V aan en klik op Continue.

  5. Klik op de Cells-knop. Zorg dat in de Counts box de optie Observed is aangevinkt. Ga dan naar het Percentage gedeelte en klik de Row, Column en Total boxen aan.

  6. Klik op Continue en vervolgens op OK (of op Paste om de Syntax Editor op te slaan).

Interpretatie van de output


Om te beginnen is het van belang om te kijken of er assumpties zijn geschonden als het gaat om de chi-square ‘minimaal verwachte celfrequentie’. Deze moet 5 of groter zijn.

De belangrijkste waarde waarin je geïnteresseerd bent is de Pearson Chi-Square waarde; deze vind je in de Chi-Square Tests. Als je een 2x2 tabel hebt, gebruik je de waarde uit de tweede rij (Continuity Correction). Dit is de continuïteitscorrectie van Yates.

Voor meer gedetailleerde informatie uit een onderzoek kan ook gebruik worden gemaakt van kruisverwijzingen in een Crosstabulation.

Er zijn in de Crosstabs procedure verschillende soorten statistieken beschikbaar om de effectgrootte te berekenen. De twee meest voorkomende zijn:

  • phi coëfficiënt: dit is een correlatiecoëfficiënt die kan variëren tussen 0 en 1. Hoe hoger de waarde, des te sterker is de associatie tussen de twee variabelen. De phi coëfficiënt wordt veelal gebruikt bij 2 bij 2 tabellen.

  • Cramer’s V: deze statistiek geeft de waarde weer van tabellen die groter zijn dan 2 bij 2. Hierbij wordt ook rekening gehouden met het aantal vrijheidsgraden (df).

16.4 Wat is de McNemar’s test?

Bij gelijke of herhaalde metingen kunnen geen chi-square tests worden gebruikt. In een dergelijk geval wordt gebruikt gemaakt van de test van McNemar. Ook je data is anders. Bij gelijke of herhaalde metingen heb je twee variabelen; de eerste is gemeten op tijdstip 1 (voorafgaand aan een interventie) en de tweede op tijdstip 2 (na een interventie). Beide variabelen zijn categorisch en brengen dezelfde informatie in kaart.

Procedure voor McNemar’s test

  1. Klik in het menu bovenaan het scherm op Analyze, selecteer vervolgens Descriptive Statistics en daarna Crosstabs.

  2. Verplaats een van je variabelen (bijv. tijdstip 1) naar de Row(s) box.

  3. Verplaats de andere variabele (bijv. tijdstip 2) naar de Column(s) box.

  4. Klik op de Statistics-knop, vink McNemar aan en klik op Continue.

  5. Klik op de Cells-knop. Zorg dat in de Counts-box de optie Observed is aangevinkt. Klik in het Percentage gedeelte op de Row, Column boxen.

  6. Klik op Continue en vervolgens op OK (of op Paste om de Syntax Editor op te slaan).

Interpretatie van de output

In de Chi-Square Tests tabel onder de Crosstabulation tabel vindt je de p-waarde (Exact Sig.). Indien deze kleiner is dan .05, betekent dit dat er een significant verschil is tussen je twee variabelen.


De McNemar test is alleen toepasbaar wanneer je twee responscategorieën hebt (bijv. ja/nee of aanwezig/afwezig). Echter, wanneer je drie of meer categorieën hebt, kan de McNemar’s test nog steeds gebruikt worden. SPSS genereert dan automatische de resultaten van de McNemar-Bowker symmetrietest..

16.5 Wat is de Cochran’s Q test?

Wanneer er bij een onderzoek drie of meer momenten in tijd zijn, moet gebruik worden gemaakt van Cochran’s Q test.

Procedure voor Cochran’s Q

  1. Klik in het menu bovenaan het scherm op Analyze, vervolgens op Nonparametric Tests, daarna op Legacy Dialogs en vervolgens op K Related Samples.

  2. Klik op de categorische variabelen die de verschillende tijdsmomenten representeren en verplaats ze naar de Test Variables box.

  3. Klik in het Test Type gedeelte de Cochran’s Q-optie aan. Zorg dat er geen vinkje staat bij Friedman-test.

  4. Klik op OK (of op Paste om de Syntax Editor op te slaan).

Interpretatie van de output

  1. Om vast te stellen of er een significant verschil is tussen de variabelen/tijdsmomenten, kijk je naar de p-waarde (Asymp. Sig.); deze moet kleiner zijn dan .05.

16.6 Welke functie heeft Kappa?

Kappa’s maat van overeenstemming (measure of agreement) wordt veelal toegepast wanneer de interbeoordelaarsbetrouwbaarheid moet worden vastgesteld. Kappa is een schatting van de mate van overeenstemming tussen twee beoordelaars/tests. Hierbij wordt rekening gehouden met de mate van overeenstemming die zich toevallig zou kunnen hebben voorgedaan.

De waarde die wordt verkregen uit Kappa’s maat van overeenstemming wordt beïnvloed door de prevalentie van de positieve waarde. Dit betekent dat bij studies waar het interessedomein zeldzaam is, de kappa-statistiek zeer laag kan zijn, ondanks hoge niveaus van algemene overeenstemming.

Een aanvullende assumptie van deze benadering, is dat ervan uit wordt gegaan dat beoordelaar/test 1 en beoordelaar/test 2 hetzelfde aantal categorieën heeft.

Procedure voor Kappa: maat van overeenstemming

  1. Klik in het menu bovenaan het scherm op Analyze, vervolgens op Descriptive Statistics en daarna op Crosstabs.

  2. Klik op de variabele die je in de output-tabel in de rij wil hebben staan en verplaats deze naar de Row(s) box.

  3. Klik op de andere variabele die je in de output-tabel in de kolom wil hebben staan en verplaats deze naar de Column(s) box.

  4. Klik op de Statistics-knop, selecteer Kappa en klik op Continue.

  5. Klik op de Cells-knop.

  6. Zorg dat in de Counts box de optie Observed is aangevinkt.

  7. Klik in het Percentage gedeelte op Column. Klik op Continue en vervolgens op OK (of op Paste om de Syntax Editor op te slaan).

Interpretatie van de output

De belangrijkste informatie is terug te vinden in de tabel Symmetric Measures. Een waarde van .5 betekent een gemiddelde overeenkomst. Een Kappa-waarde van .7 en hoger betekent een goede overeenkomst en een waarde van .8 geeft een zeer goede overeenkomst weer.

Sensitiviteit en specificiteit

De frequenties en percentages zoals die worden weergegeven in de Crosstabulation tabel kunnen ook gebruikt worden om de sensitiviteit en specificiteit van een meting of een test te berekenen.

Sensitiviteit geeft het aandeel weer van de casussen met een ziekte of stoornis die correct zijn gediagnosticeerd. Specificiteit geeft het aandeel weer van de casussen zonder de ziekte of stoornis die correct zijn geclassificeerd.

16.7 Wat is de Mann-Whitney U Test?

De Mann-Whitney U Test wordt gebruikt om de verschillen te toetsen tussen twee onafhankelijke groepen op een continue schaal. Deze test is het niet-parametrische alternatief voor de t-test voor onafhankelijke steekproeven. De Mann-Whitney U Test vergelijkt medianen van de twee groepen. Het converteert de scores van de continue variabele om de twee groepen te rangschikken. Vervolgens kijkt de test of de rangen van de twee groepen significant verschillen.

Procedure voor Mann-Whitney U Test

  1. Klik in het menu bovenaan het scherm op Analyze, vervolgens op Nonparametric Tests, dan op Legacy Dialogs en vervolgens op 2 Independent Samples.

  2. Verplaats je continue variabele naar de Test Variable List box.

  3. Verplaats je categorische variabele naar de Grouping Variable box.

  4. Klik op de Define Groups-knop. Type de waarde in voor Groep 1 (bijv. 1) en Groep 2 (bijv. 2); dit zijn de waarden die zijn gebruikt om je waarden voor deze variabelen te coderen. Mocht je niet kunnen onthouden welke waarden voor welke groep worden gebruikt, klik dan met de rechtermuisknop op de Grouping Variable box en klik op de optie Variable Information. Er komt dan een pop-up box tevoorschijn waarin de waarden en labels voor deze variabele vermeld staan. Nadat je de waarden hebt ingevoerd, sluit je de pop-up box en klik je op Continue.

  5. Zorg dat in het Test Type gedeelte de Mann-Whitney U optie is aangevinkt.

  6. Klik op Continue en vervolgens op OK (of op Paste om de Syntax Editor op te slaan).

Interpretatie van de output

De belangrijkste waarden in je output zijn de Z-waarde en het significantieniveau welke wordt weergegeven als Asymp. Sig. (2-tailed). Als je steekproef groter is dan 30, zal SPSS de waarde geven voor een Z-benaderingstest.

Wanneer er statistisch significante verschillen tussen de groepen zijn, moet de richting van het verschil worden vastgesteld. Ofwel: welke groep is hoger? Dit kan je aflezen uit de Ranks tabel onder de kolom Mean Rank. Bij de rapportage van de resultaten is het van belang de mediaanwaarden van elke groep afzonderlijk weer te geven. Hiervoor moet je de volgende stappen volgen:

  1. Klik in het menu bovenaan het scherm op Analyze, vervolgens op Compare Means en kies dan Means.

  2. Verplaats je continue variabele naar de Dependent List box.

  3. Verplaats je categorische variabele naar de Independent List box.

  4. Klik op Options. Klik in het Statistics gedeelte op Median en verplaats deze naar de Cell Statistics box, Klik op Mean en Standard Deviation en verwijder deze uit de Cell Statistics box.

  5. Klik op Continue en vervolgens op OK (of op Paste om de Syntax Editor op te slaan).

Effectgrootte

SPSS voorziet niet in een statistische weergave van de effectgrootte. Met behulp van de z-waarde (zoals blijkt uit de output) kan de geschatte waarde van r worden berekend:

r = z / √N, waarbij N het aantal casussen is.

16.8 Wanneer wordt de Wilcoxon Signed Rank Test gebruikt?

De ‘rangschikkingstest’ van Wilcoxon is ontworpen om herhaaldelijk metingen te verrichten. Bijvoorbeeld wanneer deelnemers worden gemeten op twee verschillende momenten of onder twee verschillende condities. Het is het niet-parametrische alternatief voor de t-toets voor herhaalde metingen (ofwel t-toets voor gepaarde steekproeven). De Wilcoxon rangschikkingstest converteert de scores tot niveaus en vergelijkt deze met elkaar op tijdstip 1 en tijdstip 2.

Procedure voor de Wilcoxon Signed Rank Test

  1. Klik in het menu bovenaan het scherm op Analyze, vervolgens op Nonparametric Tests, daarna op Legacy Dialogs en kies vervolgens 2 Related Samples.

  2. Klik op de variabelen die de scores op tijdstip 1 en 2 representeren en verplaats deze naar de Test Pairs box.

  3. Zorg dat in het Test Type gedeelte de Wilcoxon optie is aangevinkt.

  4. Klik op Options en selecteer daar Quartiles (dit levert de mediaan op voor ieder tijdstip).

  5. Klik op Continue en vervolgens op OK (of op Paste om de Syntax Editor op te slaan).

Interpretatie van de output

De twee uitkomsten waarin je geïnteresseerd bent zijn de Z-waarde en de bijbehorende significante niveaus (weergegeven als Asymp. Sig. (2-delig)). Wanneer het significantieniveau gelijk is aan of lager is dan 0.5, dan is er sprake van een statistisch significant verschil tussen de twee scores.

Effectgrootte

Voor de rangschikkingstest van Wilcoxon kan de effectgrootte op een soortgelijke manier worden berekend als voor de Mann-Whitney U-test; namelijk door de z-waarde te delen door de vierkantswortel van N, waarbij N in dit geval staat voor het aantal observaties over de twee tijdstippen genomen en dus niet het aantal casussen.

16.9 Wat is de Kruskal-Wallis test?

Het niet-parametrische alternatief voor een one-way between-groups variantieanalyse is de Kruskal-Wallis test (of Kruskal-Walles H test). Deze test maakt het mogelijk om de scores te vergelijken van een variabele bestaande uit drie of meer groepen. Omdat het een analyse betreft tussen verschillende groepen, moeten er in elke verschillende groep, verschillende mensen zitten.

Procedure voor Kruskal-Wallis Test

  1. Klik in het menu bovenaan het scherm op Analyze, vervolgens op Nonparametric Tests, daarna op Legacy Dialogs en vervolgens op K Independent Samples.

  2. Verplaats je continue afhankelijke variabele naar de Test Variable List box.

  3. Verplaats je categorische onafhankelijke variabele naar de Grouping Variable box.

  4. Klik op de Define Range-knop

  5. . Vul in de Minimum box de eerste waarde van je categorische variabele in. Vul in de Maximum box de grootste waarde van je categorische variabele in.

  6. Zorg dat in het Test Type gedeelte de Kruskal-Wallis H box is aangevinkt.

  7. Klik op Continue en vervolgens op OK (of op Paste om de Syntax Editor op te slaan).

Interpretatie van de output

De belangrijkste informatie die je nodig hebt uit de output van de Kruskal-Wallis Test zijn de waarde van de Chi-square, de vrijheidsgraden (df) en het significantieniveau (weergegeven als Asymp. Sig.).

Als het significantieniveau lager is dan .05, wijst dat op een statistisch significant verschil in je continue variabele tussen de drie groepen. Voor de drie groepen kan dan gekeken worden naar de Mean Rank, welke staat weergegeven in de eerste outputtabel. Hieruit valt af te lezen welke groep gemiddeld het hoogste scoort.

Post-hoc tests en effectgrootte

Na het uitvoeren van de Kruskal-Wallis Test weet je nog niet zeker welke groepen statistisch significant van elkaar verschilen. Daarvoor zijn er follow-up Mann-Whitney U tests tussen paren van groepen nodig. Om Type 1 fouten voor te zijn, is een Bonferroni-aanpassing aan de alfawaarden nodig wanneer je de groepen met elkaar wilt vergelijken.

De Bonferroni-aanpassing houdt in dat het alfa-niveau van .05 wordt gedeeld door het aantal tests dat je wilt gaan toepassen en dat je het herziene alfa-niveau gaat gebruiken als criterium om de significantie te bepalen.

16.10 Hoe wordt de Friedman Test gebruikt?

Het niet-parametrische alternatief voor een one-way repeated measures variantieanalyse is de Friedman Test. Deze test kan gebruikt worden wanneer dezelfde steekproeven neemt en deze op drie of meer tijdstippen meet onder drie of meer verschillende condities.

Procedure voor Friedman Test

  1. Klik in het menu bovenaan het scherm op Analyze, vervolgens op Nonparametric Tests, daarna op Legacy Dialogs en vervolgens op K Related Samples.

  2. Verplaats de variabelen die de metingen representeren naar de Test Variables box.

  3. Zorg dat in het Test Type gedeelte de Friedman-optie is geselecteerd.

  4. Klik op Statistics en vink de optie Quartiles aan.

  5. Klik op Continue en vervolgens op OK (of op Paste om de Syntax Editor op te slaan).

Interpretatie van de output

Als de Chi-Square statistiek significant is betekent dit dat de Friedman Test een significant verschil heeft gevonden in de gemiddelden van je groepen of condities. Door deze scores te vergelijken kun je de richting van de variantie vaststellen.

Post-hoc tests en effectgrootte

Wanneer is vastgesteld dat er een statistisch significant verschil is ergens op de drie tijdspunten, dan zou de volgende stap zijn om een post-hoc test uit te voeren om de tijdspunten waarin je geïnteresseerd bent te vergelijken.

Welke t-toetsen kunnen in SPSS gebruikt worden? - Chapter 17 (5)

Er zijn verschillende t-toetsen beschikbaar in SPSS, in dit hoofdstuk zullen de volgende twee besproken worden:

  • T-toets voor onafhankelijke steekproeven (independent-samples t-test): deze toets wordt gebruikt om de gemiddelden van twee verschillende groepen mensen of condities te vergelijken.

  • T-toets voor gepaarde steekproeven (paired-samples t-test): deze toets wordt gebruikt om de gemiddelden van dezelfde groep mensen te vergelijken op twee verschillende momenten of wanneer er sprake is van gelijke (matched) paren.

Als er sprake is van meer dan twee groepen of condities kunnen deze toetsen niet gebruikt worden; in dat geval moet er een variantieanalyse gedaan worden.

17.1 Hoe ziet T-toets voor onafhankelijke steekproeven er uit?

Een independent-samples t-test wordt gebruikt wanneer je de gemiddelde score op een continue variabele van twee groepen deelnemers wilt vergelijken. Aan de hand van deze toets kan je bepalen of er sprake van een statistisch significant verschil tussen de gemiddelden van twee groepen. In statistische bewoording: er wordt getoetst wat de waarschijnlijkheid is dat twee reeksen scores afkomstig zijn van dezelfde populatie.

Het niet-parametrische alternatief voor deze toets is de Mann-Whitney U Test, zoals besproken in Hoofdstuk 16.

Procedure voor de t-toets voor onafhankelijke steekproeven

  1. Klik in het menu bovenaan het scherm op Analyze, vervolgens op Compare Means en dan op Independent Samples T Test.

  2. Verplaats de afhankelijke (continue) variabele naar de Test variable box.

  3. Verplaats de onafhankelijke (categorische) variabele naar het Grouping variable gedeelte.

  4. Klik op Define Groups en vul het aantal getallen in dat in de dataset wordt gebruikt om iedere groep te coderen. Mocht je niet kunnen onthouden welke waarden voor welke groep worden gebruikt, klik dan met de rechtermuisknop op de naam van de variabele en klik op de optie Variable Information. Er komt dan een pop-up box tevoorschijn waarin de waarden en labels voor deze variabele vermeld staan. Nadat je de waarden hebt ingevoerd, sluit je de pop-up box en klik je op Continue.

  5. Klik op OK (of op Paste om de Syntax Editor op te slaan).

Interpretatie van de output

Stap 1: Controleer de informatie over de groepen: Controleer het gemiddelde, de standaarddeviatie en de groepsgrootte (N) van beide groepen, te vinden in de tabel van de Group Statistics.

Stap 2: Check of aan de assumpties is voldaan: Controleer het resultaat van de Levene’s test (in het eerste gedeelte van de Independent Samples Test output box). Deze toets bepaalt of de variantie van de scores voor de twee groepen gelijk is. De uitslag bepaalt welke door SPSS gegenereerde t-waarde gebruikt moet worden. Als de significantie waarde (p) namelijk groter is dan .05, dan moet de eerste regel van de tabel worden afgelezen (Equal variances assumed). Als het significantie nivea gelijk aan of lager dan .05 is, dan schendt de data de assumptie van gelijke variantie en moet de tweede regel van de tabel worden afgelezen (Equal variances not assumed).

Stap 3: Breng de verschillen tussen de groepen in kaart: Lees de significantie waarde af onder Sig.(2-tailed) die te vinden is onder t-test for Equality of Means. Of je deze waarde af moet lezen voor equal variances assumed of not assumed blijkt dus uit stap 2. Bij een waarde gelijk aan of lager dan .05 is er sprake van een significant verschil tussen de gemiddelde scores op je afhankelijke variabele voor alle twee de groepen. Bij een waarde hoger dan .05 is er dus geen significant verschil tussen beide groepen.

Berekenen van de effectgrootte

SPSS produceert geen effectgroottes. Eta kwadraat kan met de hand berekend worden aan de hand van de informatie uit de output, met behulp van de volgende formule:

η2 = t2 / t2 + (N1 + N2 – 2)

Met de richtlijnen van Cohen kan de effectgrootte bepaald worden:

0,01 is een klein effect

0,06 is een gemiddeld/gematigd effect

0,14 is een groot effect.

Rapportage van de resultaten

Rapportage van de resultaten van de t-toets voor onafhankelijke steekproeven begint met benoemen wat je met deze toets gaat doen. Vervolgens presenteer je de resultaten (Mean, Standard Deviation en t-waarde). Met behulp van de p-waarde geef je aan of het gevonden verschil significant is en met de mean difference en eta squared presenteer je de effectgrootte. Na het uitvoeren van een serie t-toetsen kan het handig zijn de resultaten in een tabel te presenteren.

17.2 Hoe ziet de T-toets voor gepaarde steekproeven er uit?

Een paired-samples t-test (ook wel repeated measures genoemd) wordt gebruikt als je data wilt verzamelen van één groep mensen op twee verschillende momenten of onder twee verschillende condities. Hier is bijvoorbeeld sprake van bij een pre-test/post-test experimenteel design. Ook wordt de test gebruikt wanneer er sprake is van matched pairs participanten (iedere deelnemer wordt gematched met een andere deelnemer op basis van een specifiek criterium); De één wordt blootgesteld aan Interventie 1 en de ander aan Interventie 2. Voor ieder paar worden vervolgens de scores op een continue meting vergeleken.

Met deze toets kun je bepalen of er statistisch significant verschil is tussen de gemiddelde scores op tijdstip 1 en tijdstip 2. De basis assumpties voor t-testen zijn hierbij van toepassing. Een aanvulling hierop is de assumptie dat het verschil tussen de twee scores van iedere deelnemer normaal is verdeeld. Bij een steekproefgrootte van groter dan 30 is het onwaarschijnlijk dat een schending van deze assumptie serieuze problemen zal veroorzaken.

Het niet-parametrische alternatief voor deze toets is de Wilcoxon Signed Rank Test, zoals besproken in Hoofdstuk 16.

Procedure voor de t-toets voor gepaarde steekproeven

  1. Klik in het menu bovenaan het scherm op Analyze, vervolgens op Compare Means en dan op Paired Samples T Test.

  2. Verplaats de twee variabelen die je voor iedere deelnemer met elkaar wilt vergelijken naar de Paired Variables box.

  3. Klik op OK (of op Paste om de Syntax Editor op te slaan).

Interpretatie van de output

Stap 1: Bepaal de algemene betekenis: in de Paired Samples Test tabel moet in de laatste kolom (Sig (2-tailed)) gekeken worden naar de p (probability) waarde. Als deze waarde lager is dan .05, dan is er sprake van een significant verschil tussen beide scores.

Stap 2: Vergelijk de gemiddelden: nadat er vastgesteld is of er sprake is van een significant verschil, moet er uitgezocht worden welke reeks scores hoger is. Hiervoor moet gekeken worden naar de Mean scores in de Paired Samples Statistics tabel.

Berekenen van de effectgrootte

SPSS produceert geen effectgroottes. Eta kwadraat kan met de hand berekend worden aan de hand van de volgende formule:

η2 = t2 / t2 + (N – 1)

Met de richtlijnen van Cohen kan de effectgrootte bepaald worden.

Rapportage van de resultaten

In de resultaten van de t-toets van gepaarde steekproeven moeten in ieder geval de de naam en het doel van de toets opgenomen worden, de t-waarde, vrijheidsgraden, p-waarde, gemiddelden en standaardafwijkingen per groep. Het opnemen van de effectgrootte is steeds vaker een vereiste.

Hoe ziet een Eenweg ANOVA er uit in SPSS? - Chapter 18 (5)

In het vorige hoofdstuk werden t-toetsen gebruikt om de scores van twee verschillende groepen of condities te vergelijken. In veel onderzoekssituaties zijn we echter geïnteresseerd in het vergelijken van gemiddelde scores van meer dan twee groepen. In dat geval wordt gebruik gemaakt van variantieanalyse (ANOVA). Variantieanalyse wordt zo genoemd omdat de variantie (variabiliteit in scores) tussen de verschillende groepen (waarvan verwacht wordt dat deze verklaard kan worden door de onafhankelijke variabele) wordt vergeleken met de variabiliteit binnen elk van de groepen (waarvan verwacht wordt dat deze wordt veroorzaakt door toeval). De F-ratio – ofwel de variantie tussen de groepen gedeeld door de variantie binnen de groepen – wordt berekend. Een significante F-waarde betekent dat de nulhypothese, namelijk dat de populatiegemiddelden gelijk zijn, verworpen kan worden. Omdat het niks zegt over welke groepen van elkaar verschillen, dienen nog post-hoc toetsen te worden uitgevoerd. Een alternatief voor post-hoc toetsen is het uitvoeren van specifieke vergelijkingen (ofwel planned comparisons).

In dit hoofdstuk worden twee soorten one-way ANOVA’s besproken, namelijk: (1) between-groups ANOVA, welke wordt gebruikt wanneer je te maken hebt met verschillende deelnemers/casussen in elk van je groepen (ook wel het independent groups design genoemd); en (2) repeated measures ANOVA, welke wordt gebruikt wanneer je dezelfde deelnemers onder verschillende condities/tijdstippen vergelijkt (ook wel het within-subjects design genoemd).

18.1 Wanneer gebruik je post-hoc toetsen bij ANOVA?

De one-way between-groups ANOVA wordt toegepast wanneer je één categorische onafhankelijke (grouping) variabele hebt met minimaal drie niveaus (groepen) en één continue afhankelijke variabele.

Het niet-parametrische alternatief van de one-way between-groups ANOVA is de Kruskal-Wallis Test (zie hoofdstuk 16).

Procedure voor one-way between-groups ANOVA met post-hoc toetsen

  1. Klik in het menu bovenaan het scherm op Analyze, vervolgens op Compare Means en daarna op One-way ANOVA.

  2. Verplaats je afhankelijke variabele naar de Dependent List box.

  3. Verplaats je onafhankelijke variabele naar de Factor box.

  4. Klik Options aan en selecteer Descriptive, Homogenity of variance test, Brown-Forsythe, Welch en Means Plot.

  5. Zorg dat bij Missing values de optie Exclude cases analysis by analysis is aangevinkt en klik op Continue.

  6. Klik op Post Hoc en selecteer Tukey.

  7. Klik op Continue en vervolgens op OK (of op Paste om de Syntax Editor op te slaan).

Interpretatie van de output

Check altijd eerst de Descriptives tabel; hierin vind je informatie over iedere groep. Kijk vervolgens in de Test of Homogeneity of Variances tabel, waar je Levene’s test voor gelijke varianties vindt. Als de significantiewaarde (Sig.) groter is dan .05 is de assumptie van gelijke varianties niet geschonden. Mocht dit wel het geval zijn, raadpleeg dan de tabel Robust Tests of Equality Means. De twee tests die hier staan (Welch en Brown-Forsythe) zijn in dat geval beter om te gebruiken.

In de ANOVA tabel ben je voornamelijk geïnteresseerd in de Sig.-kolom; hier vind je de p-waarde. Wanneer deze kleiner is dan .05, is er sprake van een significant verschil tussen de gemiddelde scores van je afhankelijke variabele voor de verschillende groepen. Het vertelt je niet welke groepen van elkaar verschillen. De statistische significantie van de verschillen tussen iedere paar groepen staan in de Multiple Comparisons tabel, waarin je de resultaten van de post-hoc toetsen vindt. De gemiddelden van iedere groep staan in de Descriptives tabel. Kijk alleen naar de Multiple Comparisons tabel wanneer je een significante waarde hebt gevonden in je algemene ANOVA (zie de ANOVA tabel). Kijk naar de kolom Mean Difference en zoek naar asterisken (*) naast de waarden. Wanneer je een asterisk ziet, betekent dit dat de twee groepen die met elkaar worden vergeleken significant van elkaar verschillen met een p-waarde Sig.-kolom.

De Means plot is een eenvoudige manier om de gemiddelde scores van de verschillende groepen met elkaar te vergelijken. Deze plots kunnen misleidend zijn, dus kijk altijd goed naar de waarden op de y-as.

Berekenen van de effectgrootte

Hoewel SPSS geen effectgrootte genereert, kan deze wel worden berekend met behulp van de informatie uit de ANOVA tabel. Gebruik daarbij de volgende formule:

η2 = som van de kwadraten tussen groepen / totale kwadratensom

Rapporteren van de resultaten

Rapportage van de resultaten van de one-way between-groups ANOVA met post-hoc toetsen kan prima in woordelijke tekst, maar als je analyses hebt uitgevoerd voor een serie variabeles kan het handig zijn te resultaten in een tabel op te nemen.

18.2 Wanneer gebruik je geplande vergelijkingen bij ANOVA?

Geplande vergelijkingen gebruik je wanneer je geïnteresseerd bent in vergelijkingen tussen specifieke groepen. Deze techniek is meer sensitief in het detecteren van verschillen. Post-hoc toetsen, daarentegen, stellen strengere significantieniveaus om het risico op Type 1 fouten te reduceren. Je moet besluiten of je gebruik maakt van post-hoc toetsen of geplande vergelijkingen voor je aan je analyse begint.

Specificeren van coëfficiëntwaarden

Eerst moet je je groepen indelen op basis van de verschillende waarden van de onafhankelijke variabele (bijv. leeftijdscategorieën). Vervolgens moet je beslissen welke groepen je wilt vergelijken en welke je wilt negeren. De som van de coëfficiëntwaarden moet altijd 0 zijn. Coëfficiënten met verschillende waarden worden met elkaar vergeleken. Wanneer je een van de groepen wilt negeren, geef je deze de waarde 0.

Procedure voor one-way between-groups ANOVA met geplande vergelijkingen

  1. Klik in het menu bovenaan het scherm op Analyze, vervolgens op Compare Means en daarna op One-way ANOVA.

  2. Verplaats je afhankelijke (continue) variabele naar de Dependent List box.

  3. Verplaats je onafhankelijke variabele naar de Factor box.

  4. Klik Options aan en selecteer Descriptive, Homogenity of variance test, Brown-Forsythe, Welch en Means Plot.

  5. Zorg dat bij Missing values de optie Exclude cases analysis by analysis is aangevinkt en klik op Continue.

  6. Klik op Contrasts. Vul in de Coefficients box de coëfficiënt voor de eerste groep in en klik op Add. Vul de coëfficienten voor de tweede groep in en klik op Add. Doe dit voor al je groepen. Het Coefficient Total onder aan de tabel moet 0 zijn wanneer je alle coëfficiënten juist hebt ingevuld.

  7. Klik op Continue en vervolgens op OK (of op Paste om de Syntax Editor op te slaan).

Interpretatie van de output

De Descriptives en Test of homogeneity of variances tabellen zien er hetzelfde uit als die van de one-way ANOVA met post-hoc toetsen. Hier wordt alleen de output besproken die relevant is voor de geplande vergelijkingen.

Stap 1: In de Contrast Coefficients tabel staan de coëfficiënten die je voor iedere groep hebt ingevuld. Controleer of dit klopt.

Stap 2: De belangrijkste resultaten waarin je geïnteresseerd bent staan in de Contrast Tests tabel. Als Levene’s test niet significant is, is er sprake van gelijke varianties en dus moet je kijken naar de eerste rij in deze tabel. Wanneer het significantieniveau van het contrast dat je hebt gespecificeerd significant (gelijk aan of kleiner dan .05) is, betekent dit dat er een statistisch significant verschil is tussen de betreffende groep en de andere groepen. Zoals je zal zien, levert de geplande vergelijkingsanalyse een t-waarde op in plaats van een F-waarde. Om de F-waarde te verkrijgen hoef je alleen maar de t-waarde te kwadrateren. Om de resultaten te rapporteren heb je ook de vrijheidsgraden nodig. De eerste waarde (voor alle geplande vergelijkingen) is 1; de tweede staat in de tabel naast de t-waarde (onder df).

18.3 Hoe ziet de One-way repeated measures ANOVA er uit?

In een one-way repeated measures ANOVA design wordt iedere deelnemer aan twee of meerdere condities blootgesteld of op drie of meer tijdstippen op dezelfde continue schaal gemeten. De techniek kan tevens worden toegepast om de responsen van deelnemers op twee of meer verschillende vragen of items te vergelijken. Belangrijk hierbij is dat de vragen op dezelfde schaal moeten worden gemeten (bijv. 1 = helemaal mee oneens, tot 5 = helemaal mee eens).

Het niet-parametrische alternatief voor deze toets is de Friedman Test (zie hoofdstuk 16).

Procedure voor one-way repeated measures ANOVA

  1. Klik in het menu bovenaan het scherm op Analyze, vervolgens op General Linear Model en daarna op Repeated Measures.

  2. Vul in de Within Subject Factor Name box een naam in die je onafhankelijke variabele representeert. Dit is niet de daadwerkelijke variabele naam, maar slechts een label dat je koppelt aan je onafhankelijke variabele.

  3. Vul in de Number of Levels box het aantal niveaus of groepen in.

  4. Klik op Add.

  5. Klik op de Define-knop.

  6. Selecteer de variabelen die je herhaalde metingen variabele representeren en verplaats ze naar de Withing Subjects Variable box.

  7. Klik Options aan.

  8. Vink in het Display gedeelte de opties Descriptive Statistics en Estimates of effect sizes aan. Als je post-hoc toetsen wilt opvragen, selecteer dan de naam van je onafhankelijke variabele in het Factor and Factor Interactions gedeelte en verplaats deze naar de Display Means for box. Vink Compare Main effects aan. Klik in het Confidence interval adjustment gedeelte op pijl die naar beneden wijst en kies voor de optie Bonferroni.

  9. Klik op Continue en vervolgens op OK (of op Paste om de Syntax Editor op te slaan).

Interpretatie van de output

In de eerste output box zie je de beschrijvende statistieken van je verzameling scores (Mean, Standard deviation, N). Controleer of dit klopt.

In de volgende tabel (Multivariate tests) ben je geïnteresseerd in de waarde van Wilk’s Lambda en de bijbehorende significantiewaarde (onder de Sig.-kolom). Wanneer de p-waarde gelijk is aan of kleiner dan .05 kan je concluderen dat er sprake is van een significant verschil. Om de effectgrootte te achterhalen, moet je kijken naar de Partial Eta Squared-kolom in de Multivariate Tests tabel. Zie de tabel in Deel 5 voor de effectgrootte-richtlijnen.

Wanneer je een significant verschil hebt gevonden, betekent dit dat er ergens tussen je groepen een verschil is. Het vertelt je echter niet welke groepen of scores van elkaar verschillen; dit kun je aflezen uit de Pairwise Comparison tabel, waarin ieder paar groepen wordt vergeleken en wordt aangegeven of het verschil tussen de groepen significant is (zie de Sig.-kolom).

Rapporteren van de resultaten

Bij het rapporteren van de resultaten van de one-way repeated measures ANOVA geldt ook dat dit prima in woordelijke tekst kan, maar dat bij resultaten van een ANOVA voor een serie variabelen het handig kan zijn om de resultaten in een tabel te verwerken.

Hoe ziet een Tweeweg ANOVA er uit in SPSS? - Chapter 19 (5)

Two-way wil zeggen dat er twee onafhankelijke variabelen zijn. Between-groups geeft aan dat er in elk van de groepen verschillende deelnemers zitten. Aan de hand van de two-way between-groups ANOVA kan gekeken worden naar de individuele en gezamenlijke invloed van twee onafhankelijke variabelen op één afhankelijke variabele. Je kan dus niet alleen het hoofdeffect voor iedere onafhankelijke variabele toetsen, maar ook kijken of er mogelijk sprake is van een interactie-effect. Dit laatste effect vindt plaats wanneer de invloed van een onafhankelijke variabele op de afhankelijke variabele afhankelijk is van een tweede onafhankelijke variabele.

Procedure voor de two-way ANOVA

  1. Klik in het menu bovenaan het scherm op Analyze, vervolgens op General Linear Model en daarna op Univariate.

  2. Verplaats je afhankelijke (continue) variabele naar de Dependent variable box.

  3. Verplaats je onafhankelijke (categorische) variabelen naar de Fixed Factors box.

  4. Klik op Options en vervolgens op Descriptive Statistics, Estimates of effect size en Homogeneity of tests. Klik daarna op Continue.

  5. Klik op Post Hoc. Selecteer uit de Factors die aan de linkerkant staan de onafhankelijke variabelen waarin je geïnteresseerd bent en verplaats deze naar het Post Hoc Tests for gedeelte. Kies welke toets je wilt gebruiken (bijv. Tukey) en klik op Continue.

  6. Klik op de Plots-knop. Verplaats de onafhankelijke variabele met de meeste groepen naar de Horizontal box. Verplaats de overige onafhankelijke variabelen naar de Separate Lines box. Klik op Add. Als het goed is zie je nu in het Plots gedeelte je twee variabelen.

  7. Klik op Continue en vervolgens op OK (of op Paste om de Syntax Editor op te slaan).

Interpretatie van de resultaten

Controleer in de Descriptive Statistics tabel of je beschrijvende statistieken (gemiddelde scores, standaarddeviaties en aantal deelnemers (N)) juist zijn.

Check in de Levene’s Test of Equality of Error Variances of aan de assumpties is voldaan. Je wilt dat de significantiewaarde groter is dan .05. Een significant resultaat suggereert namelijk dat de variantie van je afhankelijk niet hetzelfde is over de verschillende groepen. Mocht dit het geval zijn, dan wordt aangeraden om een strenger significantieniveau (bijv. .01) te stellen om je resultaten van je two-way ANOVA te evalueren.

De belangrijkste output van de two-way ANOVA vindt je in de tabel genaamd Tests of Between-Subjects. Het eerste dat je doet is kijken of er sprake is van een interactie-effect. Wanneer hier namelijk sprake van is, wordt het lastiger om de hoofdeffecten te interpreteren. Kijk in de output naar de variabele1 * variabele 2 significantiewaarde (onder de Sig.-kolom); wanneer deze kleiner is dan of gelijk aan .05 (of een andere vastgestelde alfawaarde), is er sprake van een significant interactie-effect. Wanneer je geen interactie-effect vindt, kan je de hoofdeffecten zonder zorgen interpreteren. In de linker kolom vind je de variabelen waarin je geïnteresseerd bent. Kijk naar de Sig.-kolom naast iedere variabele om vast te stellen of er sprake is van een hoofdeffect voor elke onafhankelijke variabele. Wanneer de significantiewaarde kleiner is dan of gelijk aan .05 (of een andere vastgestelde alfawaarde), is er sprake van een significant hoofdeffect voor die onafhankelijke variabele.

De effectgrootte vind je terug in de Partial Eta Squared-kolom. Maak bij de interpretatie hiervan gebruik van de richtlijnen van Cohen (genoemd in Deel 5).

Als je significante verschillen hebt gevonden, moet je vervolgens kijken waar deze verschillen zich bevinden; dit doe je aan de hand van post-hoc toetsen. Deze toetsen zijn alleen relevant wanneer je onafhankelijke variabele uit meer dan twee niveaus/groepen bestaat. De resultaten van de post-hoc toetsen staan in de Multiple Comparisons tabel. De Tukey Honestly Significant Difference (HSD) test is een van de meest gebruikte tests. Zoek in de Sig.-kolom naar waarden kleiner dan .05. Significante resultaten staan ook aangeduid met een kleine asterisk in de Mean Difference kolom.

Aan het eind van je output vind je een plot van de scores van de verschillende groepen. Aan de hand hiervan krijg je een overzichtelijk visueel beeld van de relatie tussen je variabelen. Kijk altijd wel goed naar de schaal wanneer je de plots interpreteert.

Rapporteren van de resultaten

Belangrijk bij het rapporteren van de resultaten van de two-way ANOVA is het onderzoeken van de significantie van het interactie-effect en de effectgrootte ervan.

Aanvullende analyses in het geval van een significant interactie-effect

Wanneer je een significant interactie-effect vindt, is het raadzaam om follow-up toetsen uit te voeren om deze relatie nauwkeuriger te onderzoeken (alleen als een van je variabelen bestaat uit minimaal drie niveaus). Dit kan bijvoorbeeld aan de hand van een simpele effectenanalyse. Dit betekent dat je de resultaten van elk van de subgroepen afzonderlijk gaat bekijken. Hiervoor moet je de steekproef opsplitsen in groepen volgens een van je onafhankelijke variabelen en afzonderlijke one-way ANOVA’s uitvoeren om het effect van de andere variabele te kunnen onderzoeken. Volg hiervoor de volgende procedure:

  1. Klik in het menu bovenaan het scherm op Data en vervolgens op Split File.

  2. Klik op Organize output by groups.

  3. Plaats de groepeer variabele naar de Groups based on box. Dit splitst de steekproef op basis van deze variabele en herhaalt alle analyses die voor deze twee groepen volgen afzonderlijk.

  4. Klik op OK.

Voer, nadat je je file hebt gesplitst, een one-way ANOVA uit (zie hoofdstuk 18). Let op: Als je klaar bent met de analyse, vergeet dan niet de Split File-optie uit te zetten. Ga hiervoor weer naar Data en selecteer Split File. Vink de eerste optie (Analyse all cases, do not create groups) aan en klik op OK.

Join World Supporter
Join World Supporter
Log in or create your free account

Why create an account?

  • Your WorldSupporter account gives you access to all functionalities of the platform
  • Once you are logged in, you can:
    • Save pages to your favorites
    • Give feedback or share contributions
    • participate in discussions
    • share your own contributions through the 7 WorldSupporter tools
Follow the author: Vintage Supporter
Promotions
verzekering studeren in het buitenland

Ga jij binnenkort studeren in het buitenland?
Regel je zorg- en reisverzekering via JoHo!

verzekering studeren in het buitenland

Ga jij binnenkort studeren in het buitenland?
Regel je zorg- en reisverzekering via JoHo!

Access level of this page
  • Public
  • WorldSupporters only
  • JoHo members
  • Private
Statistics
[totalcount]
Content categories
Comments, Compliments & Kudos

Add new contribution

CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Image CAPTCHA
Enter the characters shown in the image.